
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-04-20

Improving and Extending Behavioral Animation Through Machine Improving and Extending Behavioral Animation Through Machine

Learning Learning

Jonathan J. Dinerstein
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Dinerstein, Jonathan J., "Improving and Extending Behavioral Animation Through Machine Learning"
(2005). Theses and Dissertations. 310.
https://scholarsarchive.byu.edu/etd/310

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/310?utm_source=scholarsarchive.byu.edu%2Fetd%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

IMPROVING AND EXTENDING BEHAVIORAL ANIMATION

THROUGH MACHINE LEARNING

by

Jonathan Dinerstein

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Brigham Young University

April 2005

www.manaraa.com

ii

www.manaraa.com

Copyright c© 2005 Jonathan Dinerstein

All Rights Reserved

www.manaraa.com

iv

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Jonathan Dinerstein

This dissertation has been read by each member of the following graduate committee

and by majority vote has been found to be satisfactory.

Date Parris K. Egbert, Chair

Date Bryan Morse

Date Dan Ventura

Date Michael Goodrich

Date Kevin Seppi

v

www.manaraa.com

vi

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Jonathan

Dinerstein in its final form and have found that (1) its format, citations, and bibliographical

style are consistent and acceptable and fulfill university and department style requirements;

(2) its illustrative materials including figures, tables, and charts are in place; and (3) the

final manuscript is satisfactory to the graduate committee and is ready for submission to

the university library.

Date Parris K. Egbert

Chair, Graduate Committee

Accepted for the Department

David Embley

Graduate Coordinator

Accepted for the College

G. Rex Bryce

Associate Dean
College of Physical and Mathematical Sciences

vii

www.manaraa.com

viii

www.manaraa.com

ABSTRACT

IMPROVING AND EXTENDING BEHAVIORAL ANIMATION

THROUGH MACHINE LEARNING

Jonathan Dinerstein

Computer Science

Doctor of Philosophy

Behavioral animation has become popular for creating virtual characters that are au-

tonomous agents and thus self-animating. This is useful for lessening the workload of

human animators, populating virtual environments with interactive agents, etc. Unfortu-

nately, current behavioral animation techniques suffer from three key problems: (1) delib-

erative behavioral models (i.e., cognitive models) are slow to execute; (2) interactive virtual

characters cannot adapt online due to interaction with a human user; (3) programming of

behavioral models is a difficult and time-intensive process.

This dissertation presents a collection of papers that seek to overcome each of these

problems. Specifically, these issues are alleviated through novel machine learning schemes.

Problem 1 is addressed by using fast regression techniques to quickly approximate a cog-

nitive model. Problem 2 is addressed by a novel multi-level technique composed of custom

machine learning methods to gather salient knowledge with which to guide decision mak-

ing. Finally, Problem 3 is addressed through programming-by-demonstration, allowing a

non-technical user to quickly and intuitively specify agent behavior.

ix

www.manaraa.com

x

www.manaraa.com

ACKNOWLEDGMENTS

Thanks to my advisor Dr. Parris K. Egbert, who always had time to answer my ques-

tions. The freedom he allowed me in selecting a research topic has proven critical to my

success and education.

Thanks also to Dr. Dan Ventura and Dr. Michael Goodrich, who helped guide the

machine learning and artificial intelligence aspects of my research. Their feedback on my

hypotheses and writing style have been invaluable.

I am grateful to Dr. Bryan Morse and Dr. Kevin Seppi for their support as committee

members. Their time spent on my behalf is greatly appreciated

Many thanks to my family, immediate and extended, who have been supportive during

my education. Their faith in me will never be forgotten.

I am especially grateful to my wife, Bethanne, who pretended to listen whenever I

wanted to tell her about my research ideas. Her support has made the achievement of this

degree possible.

xi

www.manaraa.com

xii

www.manaraa.com

Contents

Acknowledgments xi

I Introduction 1

1 Introduction and Motivation 3

1.1 Autonomous Agents and Machine Learning 4

1.2 Behavioral Animation . 5

1.3 Thesis Statement . 7

1.4 Overview of Dissertation . 7

1.5 Publications . 9

II Fast Construction and Approximation of Cognitive Models Through

Regression 11

2 Fast and Learnable Behavioral and Cognitive Modeling for Virtual Character

Animation 13

2.1 Introduction . 14

2.2 Related Work . 16

2.3 Introduction to Cognitive Modeling . 17

2.4 Introduction to Artificial Neural Networks 19

2.5 Fast Animation using Neural Network Approximation of Cognitive Models 20

2.5.1 Structure . 21

2.5.2 Training the Neural Network . 23

xiii

www.manaraa.com

2.5.3 Choosing Salient Variables and Features 24

2.5.4 Using the Neural Network . 26

2.5.5 Discussion . 27

2.6 Off-Line Character Learning . 28

2.6.1 Background . 29

2.6.2 Off-Line Character Learning Through Searching 30

2.6.3 Designing Fitness Functions for Character Learning 32

2.6.4 Discussion . 32

2.7 Experimental Results . 33

2.7.1 Herding a Group of Characters . 34

2.7.2 Spaceship Pilot and Asteroids . 35

2.7.3 Spaceship Battle . 37

2.8 Conclusions and Future Work . 38

3 Improved Behavioral Animation Through Regression 41

3.1 Introduction . 42

3.2 Regression of Behavioral and Cognitive Models 44

3.2.1 Formalism . 44

3.2.2 Our implementation: . 47

3.3 Comparison of Machine Learning Techniques 48

3.3.1 The artificial neural network (NN): 48

3.3.2 The support vector machine (SVM): 49

3.3.3 Continuous k-nearest neighbor (k-nn): 50

3.3.4 Other machine learning techniques: 52

3.4 Input Selection for Behavior Regression 52

3.5 Summary and Discussion . 54

III Online Adaptation for Interactive Characters 57

4 Fast and Robust Incremental Action Prediction for Interactive Agents 59

4.1 Introduction . 60

xiv

www.manaraa.com

4.2 Related Work . 61

4.3 The Interactive Agent Learning Problem 65

4.4 Technique Description . 65

4.4.1 State and Action Representations 67

4.4.2 Learning State-Action Cases . 69

4.4.3 Generalization of Cases . 70

4.4.4 Using Case-Based Action Prediction in Practice 72

4.5 Experimental Results . 74

4.5.1 Simplified Rugby Case Study . 75

4.5.2 Complex Virtual Rugby Case Study 77

4.5.3 Capture the Flag . 79

4.6 Summary and Discussion . 80

5 Fast Multi-Level Adaptation for Interactive Autonomous Characters 89

5.1 Introduction . 90

5.2 Related Work . 92

5.3 Background . 95

5.3.1 A Common Behavioral Animation Framework 95

5.3.2 Machine Learning . 97

5.4 Making Adaptation Practical . 99

5.4.1 Requirements . 99

5.4.2 Assumptions . 100

5.5 System Description . 100

5.5.1 State and Action Representations 102

5.5.2 Low-Level Learning (for Action Selection) 103

5.5.3 Mid-Level Learning (for Task Selection) 108

5.5.4 Mimicking (for Action and Task Selection) 112

5.5.5 High-Level Learning (for Goal Selection) 116

5.5.6 Using Adaptation in Practice . 118

5.6 Experimental Results . 120

xv

www.manaraa.com

5.6.1 Virtual Rugby . 120

5.6.2 Capture The Flag (CTF) . 124

5.6.3 Automated Cinematography and Attention Selection 127

5.7 Summary and Discussion . 127

IV Creating Behavior Through Demonstration 131

6 Intelligence Capture — Automatic Behavioral Animation from Human Exam-

ple 133

6.1 Introduction . 134

6.1.1 Previous Work . 135

6.2 Intelligence Capture . 136

6.2.1 Overview and Formulation . 136

6.2.2 Training . 138

6.2.3 Autonomous Behavior . 141

6.3 Experimental Results . 143

6.3.1 Spaceship Pilot . 144

6.3.2 Crowd of Articulated Human Characters 145

6.4 Discussion . 147

7 Data-Driven Programming and Behavior for Autonomous Virtual Characters151

7.1 Introduction . 152

7.2 Background and Related Work . 154

7.3 Overview and Formulation . 157

7.4 Training . 160

7.4.1 Integration . 160

7.4.2 Demonstration . 161

7.4.3 Testing and Editing . 162

7.5 Autonomous Behavior . 163

7.5.1 Behavior Synthesis . 163

7.5.2 Running Simulations . 167

xvi

www.manaraa.com

7.5.3 Parameters . 168

7.6 Using Our Technique in Practice . 169

7.7 Experimental Results . 171

7.7.1 Summary of Test Beds . 171

7.7.2 Findings . 176

7.8 Summary . 177

V Conclusion 181

8 Conclusion 183

8.1 Contributions . 183

8.2 Future Work . 185

Bibliography 196

xvii

www.manaraa.com

xviii

www.manaraa.com

Part I

Introduction

Part I provides the background information and motivation for the remainder of the

dissertation. It contains a single chapter.

Chapter 1 provides an introduction to the research contained in this dissertation. It

introduces synthetic agents, machine learning for agents, and behavioral animation. Chap-

ter 1 also discusses three key weaknesses of behavioral animation, and briefly outlines the

solutions to these problems that are presented in this dissertation.

1

www.manaraa.com

2

www.manaraa.com

Chapter 1

Introduction and Motivation

Simulation of real-world environments is necessary for many applications of comput-

ers today. These applications include training simulators, computer games, special effects

for film, immersive virtual environments, etc. Accurate simulation of the intended environ-

ment is critical if such an application is to be effective and fruitful.

The real world is full of autonomous biological creatures that are proactive, that are

goal-fulfilling, and that may interact with one another. These creatures not only include hu-

mans but also birds, dogs, fish, insects, etc. To adequately and correctly simulate a specific

environment (whether designed by human imagination or patterned after the real world), a

simulation must involve those creatures that are expected to exist in that environment.

Unfortunately, it is often implausible for a human designer to explicitly dictate the

behavior of a virtual creature. This results from the fact that the simulated environment

may evolve in unexpected or diverse ways. Thus it is often necessary to create autonomous

virtual creatures that are capable of automatically and intelligently responding to events in

their environment. Through this approach, virtual worlds can be populated with intelligent

and compelling characters. This sort of agent simulation might also be a useful tool for

rapid prototyping of agents that will later be physically constructed (e.g., robots).

A popular approach to the creation of synthetic autonomous agents that inhabit vir-

tual worlds is behavioral animation [Reynolds 1987]. A character is given perception,

decision making, and motor control skills. The character responds to events in its envi-

ronment through motion (or another external activity), thereby changing the state of its

3

www.manaraa.com

environment. There are two primary character decision making schemes: reactive (simply

responding to the current state) and cognitive (deliberating over the set of candidate choices

by predicting the outcome of each). Behavioral animation overlaps with several important

fields, including artificial intelligence, multi-agent systems, machine learning, computer

graphics, and computer-human interfaces.

The objective of this dissertation is to enhance behavioral animation through machine

learning. Specifically, techniques are presented that address the following limitations in

current methods:

1. Cognitive models are very slow to execute, distinctly limiting their usefulness.

2. Interactive virtual characters cannot adapt on-line due to interaction with a human

user — their behavior is static.

3. There are no simplified techniques for creating behavioral models. Traditionally, a

model must be explicitly designed and programmed by a skilled developer.

Solving these three problems will allow for faster creation of more effective and useful

autonomous virtual characters. Before giving the details about our solutions, we first give

a brief overview of relevant background and related work.

1.1 Autonomous Agents and Machine Learning

An agent [Stone and Veloso 1997; Weiss 1999] is an entity that is capable of sensing

its environment, making choices, and then performing actions that carry out those choices.

Thus an agent can cause changes in the state of its environment. Real-world examples of

agents include humans and animals.

A synthetic agent is an agent created by humans. The most common form today is

software agents, though robotic agents are gaining in popularity.

A number of theories for the design and programming of synthetic agents have been

proposed [Brooks 1986; Newell 1990; Rao and Georgeff 1995]. Many aspects of these the-

ories are based on our current understanding of cognitive science [Matthews 1997; Nadel

2003]. However, the development of effective agent AI has remained difficult and costly.

4

www.manaraa.com

For this reason, it has been widely proposed that machine learning may be a more effective

approach than explicit designing of agent behavior (e.g., [Stone 2000]).

A machine learning approach to creating agent AI is compelling because it is hypoth-

esized that humans gain nearly all skills through learning [Meltzoff and Moore 1992; Byrne

and Russon 1998]. Thus it seems plausible that effective synthetic agent behavior can be

learned (semi)automatically. Many agent-oriented machine learning techniques have been

proposed, including: Q-learning [Watkins and Dayan 1992], minimax-Q [Littman 1994],

agent/user modeling [Bui et al. 1996; Gmytrasiewicz and Durfee 2000], and emotion-

guided reinforcement learning [Gadanho 2003]. One reason there are so many learning

methods is because, as proven in [Schaffer 1994], no given approach is best for all prob-

lems.

Unfortunately, none of these learning techniques explicitly address the problem do-

main of interest in this dissertation: embodied agents that inhabit virtual worlds. This

problem domain has unique constraints and requirements. Thus there is need for custom

learning methods, tailored for autonomous virtual characters.

1.2 Behavioral Animation

Most synthetic agents that exist today are software agents. This results from the fact

that software agents are far less expensive to develop and deploy than physical agents (e.g.,

autonomous robots). Moreover, there currently exists a large demand for software agents.

One popular and well-known category of software agent is autonomous virtual char-

acters. These are synthetic agents that live in virtual worlds and have bodies that are

displayed through computer graphics. These characters appear in computer-simulated or

computer-generated environments such as training simulators, computer games, special

effects for film, etc. These characters may interact with a human user and/or other au-

tonomous characters.

A number of behavioral animation systems have been developed (see for example

[Tu and Terzopoulos 1994; Blumberg and Galyean 1995; Perlin and Goldberg 1996; Isla

et al. 2001; Monzani et al. 2001]). These techniques have produced impressive results,

5

www.manaraa.com

but are limited in three aspects. First, they only perform reactive decision making, not

deliberative (i.e., cognitive) decision making. Second, they have no ability to learn, and

therefore are limited to pre-specified behavior. Third, the behavioral model for a character

must be designed and implemented explicitly, which has proven challenging, especially for

complex behavior.

Cognitive modeling [Funge et al. 1999] was recently introduced to provide virtual

characters with deliberative decision making. This is performed through a tree search, con-

structing a plan (i.e., sequence of actions) that most fully achieves the character’s current

goal. Relatively little work has been performed thus far in cognitive modeling as com-

pared to behavioral modeling. It has been shown that cognitive modeling for goal-based

computer animation can result in astonishingly realistic and rich animations [Funge et al.

1999]. However, while effective, the tree search is very slow. As a result, only a few in-

telligent virtual characters can be used simultaneously. Further, only short, sub-optimal

plans can be formulated, and only a small set of candidate actions can be considered if the

tree search is to be performed quickly enough for real-time animation. These limitations

greatly reduce the potential applications of this technique. As a result, cognitive modeling

has seen little use in practice but has remained popular from a theoretical viewpoint.

Learning has only begun to be explored in behavioral animation ([Yoon et al. 2000;

Evans 2002; Tomlinson and Blumberg 2002]). A notable example of behavioral learning is

given in [Blumberg et al. 2002], where a technique is presented by which a virtual dog can

be interactively taught by the user to exhibit desired behavior. This technique was inspired

by dog training techniques and is designed around a master-slave relationship paradigm. It

is related to reinforcement learning, and uses immediate explicit feedback from the human

user. This technique has been shown to work extremely well. However, it has no support

for high-level reasoning to accomplish complex tasks (i.e., it is reactive), and is not a good

fit when the virtual character is an opponent or peer of the human user. Also, it cannot learn

in the absence of a human user providing explicit feedback.

As listed in Section 1, there are three primary outstanding problems in the field of

6

www.manaraa.com

behavioral animation: (1) cognitive models are prohibitively slow for interactive environ-

ments; (2) characters lack the ability to adapt; and (3) designing and programming behav-

ioral/cognitive models is a technical, time-consuming endeavor. This dissertation presents

solutions to these problems. These solutions utilize novel machine learning schemes that

are tailored for the requirements and constraints of autonomous virtual characters.

1.3 Thesis Statement

The performance issue (Problem 1) is solved through the use of regression to quickly

approximate complex cognitive models, thus making the process of animating intelligent

virtual characters less CPU intensive. The adaptation issue (Problem 2) is solved by the

use of our fast multi-level online learning system, thus allowing interactive characters to

better cooperate with or compete against a unique human user. Finally, the modeling is-

sue (Problem 3) is solved by the use of our learning-by-observation or programming-by-

demonstration technique whereby an animator need only act out the desired behavior of a

character to construct a behavioral model.

1.4 Overview of Dissertation

The remainder of this dissertation (with the exception of the final chapter) consists of

a collection of papers that have been either published or submitted for publication in journal

or conference proceedings. Each chapter, therefore, has its own abstract, introduction, and

conclusions. There is also a small amount of intentional overlap between these chapters,

so that each is a self-contained paper. The references for these papers are listed in the

following section of this introduction and also appear at the beginning of the chapter to

which each applies.

Part II presents two chapters that introduce our solution for slow execution perfor-

mance of cognitive models. Specifically, Chapter 2 presents a technique for rapid approxi-

mation of a cognitive model through regression (i.e., function approximation). Samples of

the behavior of the cognitive model (in the form of state → action pairs) are collected and

then generalized using an artificial neural network. Chapter 3 presents continuing work on

7

www.manaraa.com

this topic, providing a more formal basis for our technique and suggesting that a k-nearest

neighbor (k-nn) approach be used for regression. Approximating the cognitive model with

k-nn is interesting because the system learns very quickly, is robust, and there are well-

established methods for automatically performing feature selection.

Part III presents two chapters on interactive adaptation for autonomous virtual char-

acters. Chapter 4 introduces a technique for incremental action prediction. Specifically, the

character records observations of the behavior of the human user. A model is created from

these observations. While learning is taking place, this model is used to predict the fu-

ture behavior of the user, allowing the character to intelligently choose actions to perform.

Chapter 5 extends this work, presenting a multi-level adaptation technique. Each layer is

composed of a separate learning method. These learning methods influence (from low to

high level) the character’s action selection, task selection, and goal selection. An imitation

method is also presented whereby the character can imitate novel behavior performed by

the human user.

Part IV presents two chapters on simplified construction of behavioral models through

programming by demonstration (i.e., learning by observation). Chapter 6 introduces a

technique for learning policies from human example. This technique is related to existing

programming-by-demonstration methods in the robotics and agents literature but is specif-

ically applied to behavioral animation and includes a novel conflict elimination algorithm.

Chapter 7 discusses how autonomous virtual character behavior can be specified and syn-

thesized in a data-driven manner. Sequences of actions are automatically captured from

human demonstration. This data is then used to synthesize novel behaviors by “cutting

and pasting” disjoint segments of the demonstrated action sequences. This data-driven ap-

proach is interesting because it has been empirically shown to be very scalable, intuitive,

and powerful.

Part V contains a single conclusion chapter for this dissertation. This final chapter

also proposes possible directions for future work.

8

www.manaraa.com

1.5 Publications

Chapters 2–7 are based on a collection of papers that have either been published or

submitted for publication in refereed journals or conferences. Following is a list of refer-

ences for these publications in the order in which they appear in this dissertation.

Part II. Fast Construction and Approximation of Cognitive Models Through

Regression

Jonathan Dinerstein, Parris K. Egbert, Hugo de Garis, and Nelson Dinerstein. “Fast and

learnable behavioral and cognitive modeling for virtual character animation”. Journal

of Computer Animation and Virtual Worlds, 15(2):95–108, 2004. (Chapter 2).

Jonathan Dinerstein and Parris K. Egbert. “Improved behavioral animation through regres-

sion”. In Proceedings of Computer Animation and Social Agents, pp. 231–238, 2004.

(Chapter 3).

Part III. Online Adaptation for Interactive Characters

Jonathan Dinerstein, Dan Ventura, and Parris K. Egbert. “Incremental action prediction

for interactive autonomous agents”. Computational Intelligence, 21(1):90–110, 2005.

(Chapter 4).

Jonathan Dinerstein and Parris K. Egbert. “Fast multi-level adaptation for interactive au-

tonomous characters”. To appear in ACM Transactions on Graphics, 2005. (Chap-

ter 5).

9

www.manaraa.com

Part IV. Creating Behavior Through Demonstration

Jonathan Dinerstein, Trent Crow, and Parris K. Egbert. “Intelligence capture — Automatic

behavioral animation from human example”. Submitted to Journal of Graphics Tools,

June 2004. (Chapter 6).

Jonathan Dinerstein, Parris K. Egbert, Dan Ventura, and Michael Goodrich. “Data-driven

programming and control for autonomous virtual characters”. Submitted to SIG-

GRAPH, January 2005. (Chapter 7).

10

www.manaraa.com

Part II

Fast Construction and Approximation of

Cognitive Models Through Regression

Part II addresses Problems #1 and #3 listed in Chapter 1: slow execution speed of

cognitive models and difficulty of designing/programming behavioral and cognitive mod-

els.

Chapter 2 presents a technique for rapid approximation of a cognitive model through

regression (i.e., function approximation). Samples of the behavior of the cognitive model

(in the form of state → action pairs) are collected and then generalized using an artificial

neural network. Chapter 2 was published in the Journal of Computer Animation and Virtual

Worlds and can be referenced as follows:

Jonathan Dinerstein, Parris K. Egbert, Hugo de Garis, and Nelson Dinerstein.

“Fast and learnable behavioral and cognitive modeling for virtual character

animation”. Journal of Computer Animation and Virtual Worlds, 15(2):95–

108, 2004.

Chapter 3 presents continuing work on this topic, providing a more formal basis for

our technique and suggesting that a k-nearest neighbor algorithm be used for regression.

Approximating the cognitive model with k-nn is interesting because it learns very quickly,

is robust, and there are well-established methods for automatically performing feature se-

lection. Chapter 3 was published under the following reference:

Jonathan Dinerstein and Parris K. Egbert. “Improved behavioral animation

through regression”. In Proceedings of Computer Animation and Social Agents,

pp. 231–238, 2004.

11

www.manaraa.com

12

www.manaraa.com

Chapter 2

Fast and Learnable Behavioral and Cognitive Modeling

for Virtual Character Animation

Journal of Computer Animation and Virtual Worlds, Vol. 15, No. 2, pp. 95–108, 2004.

Abstract: Behavioral and cognitive modeling for virtual characters is a promising

field. It significantly reduces the workload on the animator, allowing characters to act au-

tonomously in a believable fashion. It also makes interactivity between humans and virtual

characters more practical than ever before. In this paper we present a novel technique

where an artificial neural network is used to approximate a cognitive model. This allows

us to execute the model much more quickly, making cognitively empowered characters

more practical for interactive applications. Through this approach, we can animate several

thousand intelligent characters in real-time on a PC. We also present a novel technique for

how a virtual character, instead of using an explicit model supplied by the user, can au-

tomatically learn an unknown behavioral/cognitive model by itself through reinforcement

learning. The ability to learn without an explicit model appears promising for helping be-

havioral and cognitive modeling become more broadly accepted and used in the computer

graphics community, as it can further reduce the workload on the animator. Further, it

provides solutions for problems that cannot easily be modeled explicitly.

Keywords: computer animation, synthetic characters, behavioral modeling, cognitive

modeling, machine learning, reinforcement learning.

13

www.manaraa.com

2.1 Introduction

Virtual characters are an important part of computer graphics. These characters have

taken forms such as synthetic humans, animals, mythological creatures, and non-organic

objects that exhibit life-like properties (walking lamps, etc). Their uses include entertain-

ment, training, simulation, etc. As computing and rendering power continue to increase,

virtual characters will only become more commonplace and important.

One of the fundamental challenges involved in using virtual characters is animating

them. It can often be difficult and time consuming to explicitly define all aspects of the

behavior and animation of a complex virtual character. Further, the desired behavior may

be impossible to define ahead of time if the character’s virtual world changes in unexpected

or diverse ways. For these reasons, it is desirable to make virtual characters as autonomous

and intelligent as possible while still maintaining animator control over their high-level

goals. This can be accomplished with a behavioral model: an executable model defining

how the character should react to stimuli from its environment. Alternatively, we can use

a cognitive model: an executable model of the character’s thought process. A behavioral

model is reactive (i.e., seeks to fulfill immediate goals), whereas a cognitive model seeks

to accomplish long-term goals through planning: a search for what actions should be per-

formed in what order to reach a goal state. Thus a cognitive model is generally considered

more powerful than a behavioral one, but can require significantly more processing power.

As can be seen, behavioral and cognitive modeling have unique strengths and weaknesses,

and each has proven to be very useful for virtual character animation.

However, despite the success of these techniques in certain domains, some important

arguments have been brought against current behavioral and cognitive modeling systems

for autonomous characters in computer graphics.

First, cognitive models are traditionally very slow to execute, as a tree search must

be performed to formulate a plan. This speed bottleneck requires the character to make

sub-optimal decisions and limits the number of virtual characters that can be used simul-

taneously in real-time. Also, since a search of all candidate actions throughout time is

performed, it is necessary to use only a small set of candidate actions (which is not practi-

cal for all problems, especially those with continuous action spaces). Note that behavioral

14

www.manaraa.com

models are currently more popular than cognitive models, partially because they are usually

significantly faster to execute.

Second, for some problems, it can be very difficult and time consuming to construct

explicit behavioral or cognitive models (this is known as the curse of modeling in the arti-

ficial intelligence field). For example, it is not uncommon for behavioral/cognitive models

to require weeks to design and program. Therefore, it would be extremely beneficial to

have virtual characters be able to automatically learn behavioral and cognitive models if

possible, alleviating the animator of this task.

In this paper, we present two novel techniques. In the first technique, an artificial

neural network is used to approximate a cognitive model. This allows us to execute our

cognitive model much more quickly, making intelligent characters more practical for in-

teractive applications. Through this approach, we can animate several thousand intelligent

characters in real-time on a PC. Further, this approach allows us to use optimal plans rather

than sub-optimal plans.

The second technique we introduce allows a virtual character to automatically learn

an unknown behavioral or cognitive model through reinforcement learning. The ability

to learn without an explicit model appears promising for helping behavioral and cognitive

modeling become more broadly used in the computer graphics community, as this can

further reduce the workload on the animator. Further, it provides solutions for problems

that cannot easily be modeled explicitly.

In summary, this paper presents the following original contributions:

• A novel technique for fast execution of a cognitive model using neural network ap-

proximation.

• A novel technique for a virtual character to automatically learn an approximate be-

havioral or cognitive model by itself (we call this off-line character learning).

We present each of these techniques in turn. We begin by surveying related work. We

then give a brief introduction to cognitive modeling (as it is less well known than behavioral

modeling) and neural networks. Next we present our technique for using neural networks to

rapidly approximate cognitive models. We then give a brief introduction to reinforcement

15

www.manaraa.com

learning, and then present our technique for off-line character learning. Next we present

our experience with several experimental applications and the lessons learned. Finally, we

conclude with a summary and possible directions for future work.

2.2 Related Work

Previous computer graphics research in the area of autonomous virtual characters in-

cludes automatic generation of motion primitives [van de Panne and Fiume 1993; van de

Panne et al. 1994; Sims 1994; Grzeszczuk and Terzopoulos 1995; Grzeszczuk et al. 1998;

Hodgins and Pollard 1997; Gleicher 1998]. This is useful for reducing the work required

by animators. More recently, Faloutsos et al. [2001] present a technique for learning the

pre-conditions from which a given specialist controller can succeed at its task, thus al-

lowing them to be combined into a general purpose motor system for physically based

animated characters. Note that these approaches to motor learning focus on learning how

to move to minimize a cost function (such as the energy used). Therefore, these techniques

do not embody the virtual characters with any decision-making abilities. However, these

techniques can be used in a complementary way with behavioral/cognitive modeling in a

multi-level animation system. In other words, a behavioral/cognitive model makes a high-

level decision for the character (e.g., “walk left”), which is then carried out by a lower-level

animation system (e.g., skeletal animation).

A great deal of research has also been performed in control of animated autonomous

characters [Reynolds 1987; Tu and Terzopoulos 1994; Blumberg and Galyean 1995; Perlin

and Goldberg 1996]. These techniques have produced impressive results, but are limited

in two aspects. First, they have no ability to learn, and therefore are limited to explicit

pre-specified behavior. Secondly, they only perform behavioral control, not cognitive con-

trol (where behavioral means reactive decision making and cognitive means reasoning and

planning to accomplish long-term tasks). On-line behavioral learning has only begun to

be explored in computer graphics [Burke et al. 2001; Yoon et al. 2000; Tomlinson and

Blumberg 2002]. A notable example is [Blumberg et al. 2002], where a virtual dog can

be interactively taught by the user to exhibit desired behavior. This technique is based on

16

www.manaraa.com

reinforcement learning and has been shown to work extremely well. However, it has no

support for long-term reasoning to accomplish complex tasks. Also, since these learning

techniques are all designed to be used on-line, they are (for the sake of interactive speed)

limited in terms of how much they can learn.

To endow virtual characters with long-term reasoning, cognitive modeling for com-

puter graphics was recently introduced [Funge et al. 1999]. Cognitive modeling can provide

a virtual character with enough intelligence to automatically perform long-term, complex

tasks in a believable manner.

The techniques we present in this paper build on the successes of traditional behav-

ioral and cognitive modeling with the goal of alleviating two important weaknesses: per-

formance of cognitive models, and time-consuming construction of explicit behavioral and

cognitive models. We will first present our technique for speeding up cognitive model

execution through approximation. We will briefly review cognitive modeling and neural

networks, and then present our new technique.

2.3 Introduction to Cognitive Modeling

Cognitive modeling [Funge et al. 1999; Funge 1999; Terzopoulos 1999; Funge 2000]

is closely related to behavioral modeling, but is less well known, so we now provide a brief

introduction. A cognitive model defines what a character knows, how that knowledge is

acquired, and how it can be used to plan actions. The traditional approach to cognitive

modeling is a symbolic approach. It uses a type of first-order logic known as “the situation

calculus,” wherein the virtual world is seen as a sequence of situations, each of which is a

“snapshot” of the state of the world.

The most important component of a cognitive model is planning. Planning is the

task of formulating a sequence of actions that are expected to achieve a goal. Planning is

performed through a tree search of all candidate actions throughout time (see Figure 2.1).

However, it is usually cost prohibitive to plan all the way to the goal state. Therefore, any

given plan is usually only a partial path to the goal state, with new partial plans formulated

later on.

17

www.manaraa.com

Figure 2.1: Planning is performed with a tree search of all candidate actions throughout

time. To perform planning in real-time without dedicated hardware, it is usually necessary

to greatly limit the number of candidate actions and to only formulate short (sub-optimal)

plans.

The animator has high-level control over the virtual character since she can supply it

with a goal state. Note that to achieve real-time performance, it is necessary to have the goal

hard-coded into the cognitive model. This is because it is necessary to implement custom

heuristics to speed up the tree search for planning (for further details see [Funge et al.

1999]). Therefore, either an animator and programmer must collaborate, or the programmer

must also be the animator.

This traditional symbolic approach to cognitive modeling has many important strengths.

It is explicit, has formal semantics, and is both human readable and executable. It also has

a firm mathematical foundation and is well established in AI theory. However, it also has

some significant weaknesses with respect to application in computer graphics animation.

Since planning is performed through a tree search, and the branching factor is the number

of actions to consider, the set of candidate actions must be kept very small if real-time per-

formance is to be achieved. Also, to keep real-time performance, we are limited to short

(sub-optimal) plans. Another performance problem that is unique to computer graphics is

the fact that the user may want to have many intelligent virtual characters interacting in

real-time. In most situations, on a commodity PC, this is impossible to achieve with the

traditional symbolic approach to planning. Another limitation is that it is not possible to

18

www.manaraa.com

Figure 2.2: (a) Mathematical model of a neuron j. (b) A three-layer feedforward neural

network of p inputs and q outputs.

have a virtual character automatically learn a cognitive model by itself (which could further

reduce the workload on the animator, and provide solutions to very difficult problems).

2.4 Introduction to Artificial Neural Networks

Note that there are many machine learning techniques, many of which could be used

to approximate an explicit cognitive model. However, we have chosen to use neural net-

works because they are both compact and computationally efficient. In this section we

briefly review a common type of artificial neural network [Haykin 1999]. A more thorough

introduction can be found in [Grzeszczuk et al. 1998]. There are many libraries and appli-

cations publicly available1 (free and commercial) for constructing and executing artificial

neural nets.

A neuron can be modeled as a mathematical operator that maps R
p → R. Consider

Figure 2.2a. Neuron j receives p input signals (denoted si). These signals are scaled by

associated connection weights wi j. The neuron sums its input signals

z j = w0 j +
p

∑
i=1

siwi j = u ·w j,

where u = [1,s1,s2, ...,sp] is the input vector and w j = [w0 j,w1 j, ...,wp j] is the connection

weight vector. The neuron outputs a signal s j = g(z j), where g is an activation function:

s j = g(z j) = 1/(1+ e−z j).

1e.g., SNNS (ftp.informatik.uni-tuebingen.de/pub/SNNS) and Xerion (ftp.cs.toronto.edu/pub/xerion).

19

www.manaraa.com

A feedforward artificial neural network (see Figure 2.2b), also known simply as a

neural net, is a set of interconnected neurons organized in layers. Layer l receives inputs

only from the neurons of layer l − 1. The first layer of neurons is the input layer and the

last layer is the output layer. The intermediate layers are called hidden layers. Note that

the input layer has no functionality, as its neurons are simply “containers” for the network

inputs.

A neural network “learns” by adjusting its connection weights such that it can perform

a desired computational task. This involves considering input-output examples of the de-

sired functionality (or target function). The standard approach to training a neural net is the

backpropagation training algorithm [Rumelhart et al. 1986]. Note that it has been proven

that neural networks are universal function approximators (see [Hornik et al. 1989]).

An alternative approach that we considered was to use the continuous k-nearest neigh-

bor algorithm [Mitchell 1997]. Unlike neural nets, the k-nearest neighbor algorithm pro-

vides a local approximation of the target function, and can be used automatically without

the user carefully selecting inputs. Also, k-nearest neighbor is guaranteed to learn the target

function to the quality of the examples that it has been provided (whereas no such guarantee

exists with neural nets). However, k-nearest neighbor requires the explicit storage of many

examples of the target function. Because of this storage issue, we opted to use a neural net

approach.

2.5 Fast Animation using Neural Network Approximation

of Cognitive Models

The novel technique we now present is analogous to how a human becomes an expert

at a task. As an example, let’s consider typing on a computer keyboard. When a person

first learns how to type, she must search the keyboard with her eyes to find every key she

wishes to press. However, after enough experience, she learns (i.e., memorizes) where the

keys are. Thereafter, she can type more quickly, only having to recall where the keys are.

There is a strong parallel between this example and all other tasks humans perform. After

20

www.manaraa.com

enough experience we no longer have to implicitly “plan” or “search” for our actions; we

simply recall what to do.

In our technique, we use a neural net to learn (i.e., memorize) the decisions made

through planning by a cognitive model to achieve a goal. Thereafter, we can quickly recall

these decisions by executing the trained neural net. Training is done off-line and then

the trained network is used on-line. Thus, we can achieve intelligent virtual characters in

real-time using very few CPU cycles.

We now present our technique in detail, first discussing the structure of our technique,

followed by how to train the neural network, and then finally how to use the trained network

in practice.

2.5.1 Structure

A cognitive model with a goal defines a policy. A policy specifies what action to

perform for a given state. A policy is formulated as

a = µ(i),

where i is the current state and a is the action to perform. This is a non-context-sensitive

formulation, which covers most cognitive models. However, if desired, context informa-

tion can also be supplied as input (e.g., the last n actions can be input). We train our

feedforward neural net to approximate a specific policy µ . We denote the neural net ap-

proximation of the policy µ̂ (see Figure 2.3a). Note that the current state (network input)

and action (output) will likely be vector-valued for non-trivial virtual worlds and charac-

ters. Further, a logical selection and organization of the input and output components can

help make the target function as smooth as possible (and therefore easier to approximate).

Selecting network inputs will be discussed in more detail later. Also note that the input

should be normalized and the output denormalized for use. Specifically, the normalized

input components should have zero means and unit variances, and the normalized output

components should have 0.5 means and be in the range [0.1, 0.9]. This ensures that all

inputs contribute equivalently, and that the output is in a range the neural net’s activation

function can produce.

21

www.manaraa.com

Figure 2.3: (a) Neural net approximation of a policy µ . The network input is the current

state, the output is the action to perform. Tσ and T−σ normalize the input and denormalize

the output, respectively. (b) Neural net approximation of a priority function.

An important question is how many hidden layers (and how many neurons in each of

those hidden layers) we need to use in a neural net to achieve a good approximation of a

policy. This is important because we want a reasonable approximation, but we also want

the neural net to be as fast to execute as possible (i.e., there is a speed/quality tradeoff).

We have found empirically that, at minimum, it is best to use one hidden layer with the

same number of neurons as there are inputs. If a higher quality approximation is desired,

it is useful to use two hidden layers, the first with 2p + 1 neurons (where p is the number

of inputs), and the second with 2q + 1 neurons (where q is the number of outputs). We

have found empirically that any more layers and/or neurons than this usually provides little

benefit. Note that the state and action spaces can be continuous or discrete, as all processing

in a neural network is real-valued. If discrete outputs are desired, the real-valued outputs

of the network should simply be quantized to predefined discrete values.

Even though cognitive models (i.e., policies) produce good animations in most cases,

there are some cases in which they can appear too predictable. This is due to the fact that

cognitive models are fundamentally deterministic (mapping states to actions). We now

introduce an alternative form of our technique that addresses this problem. First note that,

in some cases, it may be interesting to not always perform the same action for a given state

(even if that action is most desirable). Occasional slight randomness in the decision making

of an intelligent virtual character, performed in the right manner, can dramatically improve

the aesthetic quality of an animation when predictability cannot be tolerated. However,

it is not enough to simply choose actions at random, as this makes the virtual character

appear very unintelligent. Instead, we do this in a much more believable fashion with

a modification of the structure of our technique (see Figure 2.3b). We formulate it as a

22

www.manaraa.com

priority function:

priority = Pµ(i,a).

The priority function represents the value of performing any given action a from the current

state i under a policy µ . The priority can simply be an ordering of the best action to

the worst, or can represent actual value information (i.e., how much an action helps the

character reach a goal state). Using a priority function allows us to query for the best action

at any given state, but also lets us choose an alternative action if desired (with knowledge

of that action’s cost). For example, by using the known priorities of all candidate actions

from the current state, we can select an action probabilistically. Thus our virtual character

is able to make intelligent, but non-deterministic, decisions for all situations. However,

note that while this non-deterministic technique is useful, we focus on standard policies in

this paper. This is because they are simpler, faster, and correspond to the standard approach

to cognitive modeling (i.e., always using the best possible action in a given state).

2.5.2 Training the Neural Network

We train the neural net using the backpropagation algorithm with examples of the

cognitive model’s decisions (i.e., policy). A naive approach is to randomly select many

examples from the entire state space. However, this is wasteful because we are usually

only interested in a small portion of the state space. This is because, as a character makes

intelligent decisions, it will find itself traversing into only a subset of all possible states.

As an example, consider a sheepdog that is herding a flock of sheep. It is illogical for

the dog to become afraid of the sheep and run away. It is equally illogical for the sheep

to herd the dog. Therefore, such states should never be experienced in practice. We have

found empirically that by ignoring uninteresting states, the neural net’s training can focus

on more important states, resulting in a higher quality approximation. However, for the

sake of robustness, it may be desirable to also use a few randomly selected states that we

never expect to encounter (to ensure that the neural net has at least seen a coarse sampling

of the entire state space).

23

www.manaraa.com

To focus on the subset of the state space of interest, we generate examples by run-

ning many animations with the cognitive model. At each iteration of an animation, we

have a current state and the action decided upon, which are stored for later use as train-

ing examples. We have found that using a large number of examples is best to achieve a

well-generalized trained network. Specifically, we prefer to use between 5,000 and 20,000

examples. Note that this is far more than is normally used when training neural nets, but

we found that the use of so many examples helps to ensure that all interesting states are

visited at least once (or at least a very similar state is visited). Finally, note that if a small

time step is used between actions, it may be desirable to only keep an even subsampling

of the examples generated through animation. This is because, with a small time step, it

is likely that little state change will occur with each step and therefore temporally adjacent

examples may be virtually identical.

We used a backpropagation learning rate of η ∼= 0.1 and momentum of γ ∼= 0.4 in all

our experiments. Training a neural net took about 15 minutes on average using a 1.7 GHz

PC. In all of our experiments, an appropriate selection of inputs to the neural net resulted

in a good approximation of a cognitive model.

2.5.3 Choosing Salient Variables and Features

Training a neural network is not a conceptually difficult task. All that is required is

to supply the backpropagation algorithm with examples of the desired behavior we want

the network to exhibit. However, there is one well-known challenge that we need to dis-

cuss: selecting network inputs. This is critical as too many inputs can make a neural net

computationally infeasible. Also, a poor choice of inputs can be incomplete or may define

a mapping that is too rough for a neural net to approximate well. General tips for input

selection can be found in [Haykin 1999], so we only briefly mention key points and focus

our current discussion on lessons we have learned specific to approximation of cognitive

models.

The inputs should be salient variables (no constants), which have a strong impact

in determining the answer of the function. Further, if possible, features should be used.

Features are transformations or combinations of state variables. This is useful for not only

24

www.manaraa.com

reducing the total number of inputs but also making the input-output mapping smoother.

Through experience, we have discovered some useful features that we now present.

When approximating cognitive models, many of the potential inputs represent raw 3D

geometry information (position, orientation, etc). We have found that it is very important

to make all inputs rotation and translation invariant if possible. Specifically, we have found

it very useful to transform all inputs so that they are relative to the local coordinate system

of the virtual character. That is, rather than considering the origin to be at some fixed point

in space, transform the world such that the origin is with respect to the virtual character.

This not only makes it unnecessary to input the character’s current position and orientation,

but also makes the mapping smoother.

We have also found it useful to, in some cases, separate critical information into dis-

tinct inputs. For example, if a cognitive model relies on knowing the direction and distance

to an object in its virtual world, this information could be presented as a scaled vector

(dx,dy,dz). However, we have found that in many cases it is better to present this in-

formation as a normalized vector with distance (x,y,z,d), as the decision-making may be

dramatically different depending on the distance. In other words, if a piece of information

is very important to the decision-making of a cognitive model, the mapping will likely be

more smooth if that information is presented as a separate input to the neural net. Thus

we need to balance the desire to keep the number of inputs low with clearly presenting all

salient information.

Finally, note that choosing good inputs sometimes requires experimentation to see

what choice produces the best trained network, as input selection can be a difficult task.

However, recall that if storage is not a concern, k-nearest neighbor can be used instead

of a neural network and (as described in [Mitchell 1997; Wilson and Martinez 2000]) can

automatically discover those inputs that are necessary to approximate the target function.

Several practical examples of selecting good inputs for neural networks to approxi-

mate cognitive models are given in the results section of this paper.

25

www.manaraa.com

Figure 2.4: Example of a set of (approximate) cognitive models, integrated into a synthetic

brain architecture for a virtual character — in this case, a sheepdog. The character’s current

goal determines which cognitive/behavioral model will be used.

2.5.4 Using the Neural Network

After a neural net is trained off-line, it can be used on-line to rapidly recall what action

is best to take for any given state. If the network generalizes properly during training, it

can produce high-quality approximations for states that were not explicitly represented in

the training set. Further, a neural net of a reasonable size is very fast to execute, usually

requiring far less than a microsecond. In fact, it can be executed in a fixed amount of

time, unlike explicit planning with a cognitive model since a tree search is used (which can

degenerate worst-case to visiting every node in the tree). This fixed-time feature makes

neural net approximation more applicable to interactive computer graphics animation than

using explicit cognitive models.

Since our neural net is trained to approximate a single policy, it is only useful for

one cognitive model and goal. There is a similar limitation in the traditional technique for

cognitive modeling [Funge et al. 1999], since the goal must be implemented directly into

the cognitive model. In order to overcome this one-goal limitation, we must be able to use

a set of models, where each model has its own goal (see Figure 2.4).

This is done by associating more than one neural net (or explicit cognitive model with

integrated goal) with a virtual character. Each of these (approximate) cognitive models are

independent, only one is used at a time, and the selection of which model to use depends

on the character’s current internal goal. In other words, the virtual character’s brain has

one or more (approximate) cognitive models, each capable of controlling its behavior to

accomplish a specific goal. In fact, there can be more than one (approximate) cognitive

model for any given goal, such that greater variety and/or robustness can be achieved.

26

www.manaraa.com

Note that it is possible to use both neural nets and explicit cognitive models in the same

character’s brain if desired.

The neural networks produced by our technique (a set of approximate cognitive mod-

els) can be used in most recent synthetic brain architectures for virtual characters (e.g.,

“C1” and “C4” by the Media Lab at MIT [Blumberg and Galyean 1995; Blumberg et al.

2002]). Most brain architectures are modular and layered, with the cognitive/behavioral

model to use at any given time selected based on the character’s current goal and internal

state. The model then operates in a modular fashion with the rest of the synthetic brain.

Thus our technique naturally fits with these existing brain architectures, and we can achieve

highly autonomous virtual characters with a variety of goals and behaviors.

2.5.5 Discussion

There is a great deal of preexisting validation for the approach we take in our tech-

nique, both in terms of AI theory and previous research. First, note that the difficulty of

approximating a function with a neural net is directly related to how smooth the function

is (this is analogous to the difficulty of fitting a polynomial to a curve). Note that a policy

µ (if well formulated with vector-valued input and output) is virtually always a smooth

function, because two similar states usually require similar or identical actions. Therefore,

µ is an ideal candidate for neural net approximation.

Of course, since a neural net only approximates a policy, we are not guaranteed exactly

correct results. However, a properly trained neural net should never make a “gross” error,

as it is trained to minimize the mean-squared-error. In other words, if a mistake is made,

it should be a small one. Since our goal is believable animation (which does not require

exactness), a good approximation of a policy is sufficient. Besides, it is likely that we

can achieve better results with a neural net approximation than an explicit cognitive model

anyway. This is because, for planning to be done in real-time using an explicit cognitive

model, short sub-optimal plans must be used. However, since in our technique we train a

neural net off-line, we can use high quality, optimal plans as the training examples, leading

to better real-time results.

Another benefit of using a neural net approximation is that, since planning does not

27

www.manaraa.com

have to be done in real-time, we can use large (or continuous) state and action spaces. To

support continuous state spaces, we simply need to have a sufficient set of training examples

to demonstrate the solution space. As discussed previously, we have found that using 5,000

to 20,000 examples is sufficient. It is also possible to support continuous action spaces by

finely discretizing the continuous action space. This provides a finite branching factor for

planning, but also lets us generate training examples that are nearly continuous in nature.

The primary weakness of our technique is the fact that care must be used when se-

lecting the net’s inputs (i.e., it is not obvious how to design a neural net to approximate an

explicit cognitive model). This means that a new skill must be acquired to effectively use

our technique, even if publicly available neural net software is used to create and train the

nets. Therefore, it may be preferable to use the k-nearest neighbor algorithm to provide an

approximation of the cognitive model (see [Mitchell 1997; Wilson and Martinez 2000] for

how inputs can be automatically selected). However, this alternative approach requires the

explicit storage of many examples of the target function, and therefore should only be used

if storage is not of concern.

2.6 Off-Line Character Learning

In this section we introduce off-line character learning for autonomous virtual char-

acters. By off-line character learning, we mean a character automatically learning an un-

known behavioral or cognitive model (i.e., learning to perform a task on its own). This is

interesting because it can alleviate a large part of the animator’s workload.

We have developed a novel technique to perform off-line character learning, using

a tree search to compute discrete examples of a policy. These examples are then gener-

alized into an approximate behavioral/cognitive model realized through a neural network.

We will briefly review reinforcement learning (machine learning without a teacher) to lay

a foundation for our discussion, and then introduce our technique for off-line character

learning.

28

www.manaraa.com

2.6.1 Background

In reinforcement learning, the machine learning of an input-output mapping is per-

formed through continued interaction with an environment in order to maximize a scalar

index of performance. This performance index is called a fitness function. Some of the

earliest research in computer graphics involving reinforcement learning sought to have vir-

tual characters automatically learn how to walk, swim, or jump optimally [van de Panne

and Fiume 1993; van de Panne et al. 1994; Sims 1994; Grzeszczuk and Terzopoulos 1995].

As an example, the fitness function for walking was the distance traveled in a unit of time.

However, while interesting and useful, this type of learning does not provide characters

with decision-making abilities. Behavioral learning in computer graphics has only begun

to be explored (e.g., [Blumberg et al. 2002]).

The goal of reinforcement learning is to automatically learn an optimal policy, µ*. By

optimal, we mean that the policy always maps the current state to the best possible action

according to the fitness function. The challenge is to find µ* automatically and quickly.

There are several techniques to do this (excellent surveys are given in [Kaelbling et al.

1996; Sutton and Barto 1998]). However, the most popular and general approach is known

as Q-learning [Watkins and Dayan 1992].

In Q-learning, the agent (virtual character) learns by exploring its state-action space.

This is done by trying different actions for each state to learn the fitness of all important

state-action pairs. This state-action fitness information can then be used to determine which

action is optimal for any given state. This is the optimal policy µ*. Because there is often

a prohibitively large table of state-task values to store, we must approximate it. This can be

done with a neural net as discussed in [Kaelbling et al. 1996; Sutton and Barto 1998].

We have performed several experiments using Q-learning for character learning (i.e.,

to automatically learn an unknown behavioral or cognitive model), where the only infor-

mation we gave our virtual character was a fitness function. This approach has proven

to be very difficult. First, to get stable results, we have to approximate the state-action

value table to a high accuracy. We have found that this can require a very large neural net.

For this reason, learning the state-action values can take days on a current PC. Second, as

29

www.manaraa.com

discussed in [Sutton and Barto 1998], Q-learning can be very difficult to get to work in

practice, especially since it can require visiting every state-action many times.

It is our opinion that the difficulties that accompany Q-learning for our desired appli-

cation make it an undesirable approach. For this reason, we have developed an alternative

approach to character learning based on planning-based reinforcement learning, but with

several novel particulars. We now present this technique.

2.6.2 Off-Line Character Learning Through Searching

The technique for off-line character learning we have developed is designed for stabil-

ity, simplicity, and speed. Thus, we believe it will be more useful to the computer graphics

community than a technique based on Q-learning. Note that this technique is not guar-

anteed to find an optimal policy (which explicit Q-learning is), but explicit Q-learning is

usually impractical anyway because of a large state-action value table. Also, we will show

that our technique consistently produces good results, is computationally bounded, takes

far less time than Q-learning, and is simple to implement and use. It also has a firm founda-

tion in AI theory, as it is related to techniques presented in Chapter 9 of [Sutton and Barto

1998].

To generate training examples for our optimal policy neural net, we take an approach

similar to traditional planning. Starting at a current state i, we use a tree search (as in

Figure 2.1) to formulate a plan. The tree search continues until the minimum cost path

to a specified depth of the tree is found (the cost of each state-action is determined by

the reciprocal of the fitness function). Thus no terminal state (ending to the animation) is

required, and computational time is bounded. Since this tree search is done off-line, we can

search many levels deep in the tree (e.g., 25 levels). This allows us to be very confident in

the partial plan we have formulated. Once the plan has been formulated, we keep the action

a chosen for the initial state i as the training example (i.e., µ(i) = a). We can then reuse

the latter portions of this plan to find solutions for states that we transition into, speeding

up the process dramatically.

For performing the tree search, we have found it useful to use either the popular A*

algorithm or a best-first branch-and-bound algorithm. We prefer A*, as it has proven to

30

www.manaraa.com

be the fastest in our experiments. However, A* requires an admissible heuristic (a conser-

vative estimate of the total cost to reach a goal state), which is not difficult to design but

does require some experience to do so effectively. The advantage to a best-first branch-

and-bound search is that it is generic, and thus can be used for any fitness function without

modification. See [Russell and Norvig 2003] for more general information on tree search-

ing.

The tree search depth limit to use is an important question, as it limits how far ahead

the character will consider its actions. On one hand it is useful to limit this depth to make

the off-line learning algorithm as fast as possible, but on the other hand we want the charac-

ter to succeed at its task. Setting the tree search depth is obviously task specific. A heuristic

we have found to work well in practice is to set the depth limit based on minimum reaction

time required by the actor. In other words, the character needs to consider far enough into

the future that it will have sufficient time to prepare appropriately for upcoming situations.

For example, a virtual spaceship pilot needs to start turning well in advance if she is to

dodge a large asteroid in her path.

The biggest challenge we have encountered (with both this technique and character

learning using Q-learning) is designing a fitness function that produces exactly the results

we want. It is important to note that the fitness function is the only control we have over

the unknown behavioral or cognitive model our character learns. We will discuss this issue

in detail in the next subsection.

Note that our technique relies on the assumption that the task being learned is non-

context sensitive. Q-learning and other reinforcement learning techniques make this same

assumption, plus more (they are Markovian). This non-context sensitive assumption is

usually not a problem for us, as non-context sensitive policies have been shown in the

literature to be capable of performing very complex tasks. However, we have found that

being context sensitive can be very useful for virtual characters from the perspective of

portraying emotion (e.g., “happy,” “angry,” “afraid,” etc). A simple approach we use to

learn context sensitive policies is to supply a different fitness function for each context. A

different policy is then learned from each of these fitness functions (one for each context).

31

www.manaraa.com

These policies are then placed in our character’s brain, with the selection of which neural

net to use determined by the character’s current internal state.

2.6.3 Designing Fitness Functions for Character Learning

As mentioned in the previous subsection, correctly designing the fitness function is a

critical task because it is the only control we have over the unknown policy that our virtual

character will learn. Indeed, fitness function creation is known to be a non-trivial task

[Mitchell 1997; Sutton and Barto 1998].

We have found that a good fitness function for character learning should have the fol-

lowing features. First, it should be smooth and continuous (i.e., similar states having a sim-

ilar fitness), which helps avoid temporal aliasing in the animation. Second, it should have a

term restricting drastic actions (e.g., very sharp turns in a spaceship), which helps achieve

more realistic and aesthetically pleasing animation. Third, there should be a term specif-

ically rewarding actions that, from a task-specific standpoint, are desirable even though

they may not represent the best choice with respect to reaching a goal state as quickly as

possible.

One final tip: we have found it useful to experiment with different fitness functions

to see which produces the most desirable results. Often it is difficult to determine ahead of

time the exact fitness function that will achieve the desired behavior for a character. This

can be overcome by making small incremental improvements in the fitness function and

repeatedly testing it.

2.6.4 Discussion

Our planning-based character learning technique has proven to be fast, simple, and

robust (see Section 2.7 for details). We have also succeeded in automatically learning

behavioral and cognitive models for difficult and interesting tasks. In our experiments,

designing fitness functions required on average a few minutes of work; off-line learning re-

quired one hour on average per policy using a 1.7 GHz processor. This proved significantly

faster than constructing explicit behavioral and cognitive models, which often take several

32

www.manaraa.com

days or even weeks for experienced designers to design and program. Further, we were

able to learn approximate models for tasks that we were unable to devise explicit models

for.

Note that our planning-based character learning technique will only learn a sub-

optimal policy, the quality of which is based on the search depth limit used. However,

optimality is probably not necessary to achieve intelligent-appearing behavior in a virtual

character (i.e., good behavior usually looks just as realistic, and perhaps sometimes more

so, than perfect behavior). Further, note that in practice Q-learning is not optimal either, as

it can only achieve optimality after visiting every state-action an infinite number of times.

The difference between learning a behavioral model versus a cognitive model is merely

the tree search depth limit: a short look-ahead results in reactive behavior, whereas a long

look-ahead maximizes long-term utility. Therefore, in the approach we take, these two

types of models are realized in exactly the same way and are differentiated with merely the

adjustment of a parameter.

2.7 Experimental Results

We implemented our techniques (rapidly approximating an explicit cognitive model

and off-line character learning) and used them to perform a series of experiments. We

report our findings in this section. These experiments were designed to cover, in a general

way, all major distinguishing aspects of behavioral and cognitive tasks (e.g., temporally

coarse- or fine-grain action selection, continuous or discrete state and action spaces, simple

or complex state information, etc). We used single-precision floating point in our neural

nets, which doubles the performance of the division and power operations with very little

loss in quality. All animations were rendered in real-time using OpenGL on a 1.7 GHz PC

with an ATI Radeon 8500 (commodity) video card. Quicktime videos are available from

http://rivit.cs.byu.edu/a3dg/publications.php.

33

www.manaraa.com

Figure 2.5: Snapshots of a skeleton herding a group of humans. All characters are artic-

ulated figures. The skeleton is controlled by a cognitive model that selects high-level ac-

tions, which are carried out by a skeletal animation system. We first constructed an explicit

cognitive model, and then had our character automatically learn a model through off-line

character learning. The neural net approximation was significantly faster to execute than

the explicit cognitive model (about 1 µs vs. 0.2 sec). Also, character learning required less

time than for us to program an explicit model (a few hours vs. a few days).

2.7.1 Herding a Group of Characters

The experiment of herding is interesting for putting our work in perspective, as it has

been used to test many previous techniques (e.g., [Funge et al. 1999], where a large dinosaur

herded smaller ones). Also, this experiment is a good test case for behavioral/cognitive

models that are applied at a high level in the animation hierarchy, with temporally coarse-

grain action selection. This is important, as some of the most impressive results to date in

the literature have been achieved with high-level, temporally coarse-grain models.

In our experiment (see Figure 2.5), the character performing the herding is a skeleton,

and the characters being herded are humans. These characters are articulated figures, whose

motor control is performed through skeletal animation. The virtual world is split up into a

grid of cells (i.e., the state space is discreet). The skeleton and humans are located in one

cell at a time. They can each move to an empty adjacent cell only (i.e., the action space is

discreet). If the skeleton gets too close to the humans, they will run away in the opposite

direction. They also remain in a group (or “flock”) whenever possible. The skeleton’s task

is to move all humans to a goal location in the virtual world. Once at the goal location, the

humans cannot leave and are thereafter ignored by the skeleton. The humans are controlled

by a simple reactive system, whereas the skeleton is empowered with a cognitive model.

34

www.manaraa.com

Note that the skeleton’s cognitive model performs temporally coarse-grain action se-

lection, as the actions require a notable amount of time to perform (e.g., about a second).

Thus actions are selected occasionally, with lower levels in the animation hierarchy carry-

ing them out (e.g., motor control).

The inputs we chose for the neural net were the distances from the skeleton to the

nearest member of up to two groups of humans. This was represented as two (i, j) vectors.

The only other inputs were the distance vector to and size of the nearest obstacle, and the

direction toward the goal location. Thus we had seven inputs, resulting in a very small

neural net that was extremely fast to execute.

We implemented this experiment with both an explicit cognitive model we programmed

and with an automatically learned model (the fitness function measured how close on av-

erage all the humans were to the goal location). Though the approach taken to solve the

problem was different between the two models, they both solved it well. However, the

explicit model took three days to program, whereas the fitness function only took a few

minutes. Thus we see that character learning can not only simplify the process of creating

a behavioral/cognitive model, but also dramatically shorten the development time. Also,

note that the neural net required less than a microsecond to execute, whereas the explicit

cognitive model required about 0.2 seconds on average to compute an action.

2.7.2 Spaceship Pilot and Asteroids

In this experiment, the virtual character was a spaceship pilot (see Figure 2.6). The

pilot’s task was to maneuver the spaceship through an asteroid field (along the Z-axis),

flying from one end to the other as quickly as possible with no collisions. To ensure that

this would be a significant problem, we limited the maneuverability of the spaceship so

that the pilot would have to plan his path through space well in advance. We also placed

the asteroids close together. The animation ran at 15 frames per second, with an intelligent

action computed for each frame. Thus the model was applied at a fairly low level in the

animation hierarchy, and action selection was temporally fine-grain.

The virtual pilot had two controls over the spaceship: yaw (rotation around the Y-axis)

and pitch (rotation around the X-axis). The controls were real-valued (i.e., the action space

35

www.manaraa.com

Figure 2.6: A cognitively empowered spaceship pilot intelligently maneuvers within an

asteroid field. The pilot’s goal is to cross the asteroid field (forward motion) as quickly

as possible with no collisions. Due to the temporally fine-grain action selection in this

experiment, neural net approximation was necessary to achieve real-time performance.

was continuous). Also, the spaceship could be at any location and orientation (i.e., the state

space was continuous). The inputs we selected for the neural net were the spaceship’s cur-

rent orientation (θ ,φ), and the rotation-invariant normalized direction (i, j,k) and distance

(d) to the three nearest asteroids. Thus there were 14 inputs total. The network had two

outputs, which determined the change in the spaceship’s orientation.

We first programmed an explicit cognitive model. Since the ideal action space was

continuous, we had to discretize it dramatically to achieve real-time performance (there

were only 9 possible actions the pilot could do). We also had to limit planning to a tree

depth of 5 levels. The final result was a poor animation, due to the fact that the pilot

could not plan far enough ahead to adequately maneuver the spaceship around the asteroids.

Also, because the discretization of the action space was so coarse, the motion was not very

smooth.

In our next experiment we improved the planning of our explicit cognitive model,

taking advantage of the fact that we could perform our tree search off-line and then train

a neural net to “memorize” the correct actions. This significantly improved the results, as

we were able to formulate much better plans and also use a more fine grain discretization

of the action space. Using a fast neural net approximation of this improved (but slower)

36

www.manaraa.com

explicit cognitive model, the spaceship pilot was able to dodge all asteroids, and the motion

was smooth and aesthetically pleasing. This neural net animation utilized very little CPU:

about a microsecond for each execution. Comparatively, the high-quality explicit model

we produced required approximately 0.5 seconds to compute an action, and thus was not

able to maintain interactive rates.

Finally, we tried automatically learning a cognitive model (off-line character learn-

ing). The fitness function was determined by how direct of a route the pilot took, without

hitting any asteroids. Specifically, the reward was equal to the forward component of the

spaceship’s motion vector, and a very large penalty was given for hitting an asteroid. We

achieved excellent results, learning a cognitive model that crossed asteroid fields faster than

our explicit cognitive model and did so in a visually pleasing manner. The most challeng-

ing part of this task was in determining the fitness function that allowed us to achieve the

exact “look” that we wanted the pilot’s actions to have.

2.7.3 Spaceship Battle

Our next experiment involved a battle between two spaceships. The pilot’s controls

were identical to the previous experiment, except that the pilot could also fire a laser. The

inputs were the relative orientations of the two spaceships, their relative positions, and any

nearby lasers to avoid (all according to the pilot’s local coordinate frame). The fitness func-

tion was very simple: a reward for avoiding the other spaceship’s nose (where the laser was

mounted), a reward for shooting the other spaceship, and a punishment for being shot. We

did not attempt to program an explicit behavioral/cognitive model because we had no idea

how one should go about piloting a spaceship in combat (note that studying how to accom-

plish a task is usually necessary before one can program explicit AI to accomplish that task,

thus our technique for character learning relieved us of this burden in this experiment).

Note that a challenge for our character in learning this task is that we must know how

one pilot will behave for the other pilot to learn how to combat him. However, the problem

of learning in competitive environments has been thoroughly explored (e.g., [Reynolds

1994]). We did this by iteratively learning better cognitive models for both pilots by having

them compete. In other words, after one pilot learns a new model (and is therefore better at

37

www.manaraa.com

Figure 2.7: With the high computational speed of our technique, it is possible to perform

animations of an “epic” scale in real-time. Here we have 2,000 spaceship pilots in combat.

Our pilots are self taught (i.e., character learning), so this animation took very little human

effort to create.

his task), we then use him as an example for the other pilot to learn a new model. However,

it is also possible (and perhaps simpler in some situations) to simply construct a trivial

reactive model for one pilot and then learn a superior cognitive model for the other pilot.

As in our previous experiments, we achieved good results with our learned cognitive

model. In addition, the neural net execution time was very fast (approximately one mi-

crosecond per iteration). Due to this performance, we were able to achieve a spaceship

battle of “epic proportions” on our PC (see Figure 2.7). Specifically, we had two thou-

sand of these spaceship pilots locked in combat in real-time. Interestingly, the bottleneck

was not executing the neural nets, but rendering all the spaceships. To achieve real-time

performance, we had to use very simplified meshes. We believe this large-scale real-time

animation ability for highly intelligent virtual characters is one of the most important con-

tributions we make in this paper.

2.8 Conclusions and Future Work

In this paper, we have presented two novel techniques. First, we use machine learning

(in our system usually neural networks) to quickly approximate cognitive models. This

38

www.manaraa.com

allows us to achieve performance never before possible (several thousand intelligent au-

tonomous characters in real-time on a PC). Further, because training is done off-line, we

can use much larger action spaces and higher quality plans than previously possible.

The second technique we have introduced is off-line character learning. Through this

method, a character can automatically learn an unknown behavioral or cognitive model on

its own with nothing more than a fitness function to guide it, alleviating the animator from

the workload of programming an explicit model. This also allows us to model tasks for

which it would be difficult or virtually impossible to develop an explicit model.

However, there are some weaknesses in our approach that are important to recognize.

First, since a neural net only approximates a mapping, we are not guaranteed exactly cor-

rect results. However, since a neural net is trained to minimize the mean-squared-error of

the training examples, we are guaranteed that the network will make no “gross” errors if

it has been trained properly. Another issue of our technique is that a net’s inputs must be

chosen with care. It is important that salient variables and features in the state be identified

and used as the inputs. However, this problem can be avoided or reduced through the use

of k-nearest neighbor, where inputs can be selected automatically (but at the cost of extra

storage). Next, note that when performing off-line character learning, it can be difficult to

design a fitness function that results in the exact behavioral/cognitive model that is desired.

However, we have found it to be easy and quick to achieve a good model. Finally, note that

some behavioral/cognitive models have many salient variables. Approximating these mod-

els could require a very large, slow neural net, and therefore it may be necessary to use an

alternative machine learning technique (which suffers less from the curse of dimensionality

with respect to performance).

There are some exciting areas open for future work. For example, we have only

presented a technique for off-line character learning. On-line learning in the literature has

thus far been limited to behavioral models (short-term utility). Is it possible to learn a

cognitive model on-line in an interactive application? This could take interactive computer

graphics to a whole new level, especially in the entertainment market. This could also be

interesting if an animator could interactively train a virtual character for cognitive learning,

rather than using a fitness function.

39

www.manaraa.com

40

www.manaraa.com

Chapter 3

Improved Behavioral Animation Through Regression

Proceedings of Computer Animation and Social Agents, pp. 231–238, 2004.

Abstract: Behavioral and cognitive modeling have become popular for creating au-

tonomous, self-animating virtual characters. However, existing techniques have some

weaknesses. In particular, cognitive models are usually very computationally expensive,

limiting their usefulness. Also, behavioral and cognitive models can behave unexpectedly

since it may be impossible to exhaustively test the model for the entire input space (espe-

cially if the input space is continuous).

In this paper we present a general technique for approximating behavioral and cog-

nitive models through regression with machine learning. This provides several benefits,

such as fast execution in fixed time, and generalization using a finite set of known behavior

examples. We examine the usefulness of alternative machine learning techniques for our

problem of interest, and compare their strengths and weaknesses. We also present a custom

method for automatic input selection, which helps simplify the process of machine learning

to approximate a behavioral/cognitive model.

41

www.manaraa.com

3.1 Introduction

Computer animation is often a costly endeavor, requiring a large amount of work from

human animators. In the past decade, some notable research has been performed in devel-

oping techniques to reduce this workload through automation. One such automatic tech-

nique for computer animation is behavioral animation [Reynolds 1987] (see Figure 3.1).

In behavioral animation, virtual characters are designed to be autonomous agents, intelli-

gent enough to animate themselves at a high level. Specifically, a character selects its own

actions, which are carried out by a motor-control module. Several powerful and popular

behavioral animation systems have been introduced [Reynolds 1987; Funge et al. 1999;

Monzani et al. 2001; Devillers et al. 2002; Blumberg et al. 2002]. Excellent surveys of be-

havioral animation techniques and related topics can be found in [Millar et al. 1999; Pina

et al. 2000].

There are two primary approaches to behavioral animation. A behavioral model

[Reynolds 1987] is an executable model defining how the character should react to the

current state of its environment. Alternatively, a cognitive model [Funge et al. 1999] is an

executable model of the character’s thought process, allowing it to deliberate over its pos-

sible actions (e.g., through a tree search). Thus a cognitive model is generally considered

more powerful than a behavioral one but can require significantly more processing power.

As can be seen, behavioral and cognitive modeling have unique strengths and weaknesses,

and each has proven to be very useful for virtual character animation.

However, despite the success of these techniques in certain domains, there are two

notable limitations which we address in this paper. First, cognitive models are traditionally

very slow to execute, as a tree search must be performed to formulate a plan. Thus the

character can only make sub-optimal decisions, and the number of virtual characters that

can be used simultaneously in real-time is limited, and it is necessary to use only a small

set of candidate actions. Second, behavioral and cognitive models can act unexpectedly,

producing undesirable behavior in certain regions of the state space. This is because it

may be impossible to exhaustively test the model for the entire state space (especially if

the state space is continuous). This can be worrisome for end-user applications involving

autonomous virtual characters, such as training simulators.

42

www.manaraa.com

Figure 3.1: Example of behavioral animation in an interactive virtual world. A human user

is playing rugby against a group of characters.

In this paper, we build off our previous work reported in [Dinerstein et al. 2004b].

We introduced a novel technique for rapidly approximating behavioral/cognitive models

through regression with artificial neural networks. The purpose of that technique was to

help eliminate the problems listed above, and it succeeded to some degree. However, there

are many interesting and powerful machine learning methods, each with unique strengths

and weaknesses. As a result, since the technique in [Dinerstein et al. 2004b] uses only

neural networks for regression, it is inherently limited and one-sided. Also, that paper does

not address the problem of input selection, an important initial step in machine learning

which often requires more programmer time and effort than any other step.

43

www.manaraa.com

Ta
-1

T
 STATE

s

state
f

action' ACTION'

Figure 3.2: Overview of our model regression method.

Our contributions in this paper include a general technique for approximating be-

havioral/cognitive models through any machine learning technique that supports a real-

vector-valued formulation of inputs and outputs. We also discuss the respective strengths

and weaknesses of several popular machine learning techniques for approximating behav-

ioral/cognitive models through regression. We have found that local regression techniques

(e.g., case-based reasoning) are often more useful than global regression techniques (e.g.,

neural nets) for our problem of interest, as character behavior is often not a simple, smooth

mapping. This is especially true when sub-optimal inputs have been selected. We also

present a custom method for automatically performing input selection, designed specif-

ically for regression of behavioral/cognitive models. This method greatly simplifies and

speeds up the machine learning process for the programmer, and often selects better inputs

than the programmer as well.

3.2 Regression of Behavioral and Cognitive Models

3.2.1 Formalism

We now present our general technique for approximating behavioral/cognitive models

through machine learning (see Figure 3.2). For an introduction to machine learning, see

[Mitchell 1997].

A behavioral or cognitive model uses the virtual character’s perception of the cur-

rent state of its virtual world to select the next action to perform. More formally, a be-

havioral/cognitive model performs a state → action mapping. By representing states

and actions as real-vector-valued points of fixed dimensionality n and m (state ∈ R
n and

action ∈ R
m) we have a mapping R

n → R
m. Thus our regression problem is:

f : state ∈ R
n → action′ ∈ R

m, (3.1)

44

www.manaraa.com

where action′ signifies that it is approximate. This real-vector-valued formulation is im-

portant as it is a very general format, and therefore useful for our needs in creating a general

model approximation technique.

Not all behavioral/cognitive models use real-vector-valued representations for their

states and actions. However, most alternative state and action representations can be con-

verted to a real-vector-valued form through simple, custom transformations (and vice versa):

Ts : STATE→ state, (3.2)

Ta : ACTION→ action, (3.3)

T−1
a

: action→ ACTION, (3.4)

where caps signify the external format of states and actions (see Figure 3.2).

It is important, for the sake of generalization, that our real-vector-valued states and

actions be organized such that similar states usually map to similar actions. More formally:

(‖state1 −state2‖ < εa) ⇒ (‖action1 −action2‖ < εb), (3.5)

where ‖ · ‖ is the l2-norm, and εa and εb are small scalar thresholds. Certainly, this con-

straint need not always hold, but the smoother the mapping the simpler it will be to learn.

Moreover, if possible, it can be useful for the mapping to be C0 and C1 continuous. Of

course, the importance of these constraints vary depending on the machine learning tech-

nique used. We will discuss this in more detail later in this paper.

Regardless of the machine learning technique utilized, n (the input dimensionality)

must be kept as small as possible. This is due to the “curse of dimensionality”, a famous

thesis in machine learning stating that the difficulty of learning a mapping increases expo-

nentially for each additional input. Therefore, the behavioral/cognitive model we wish to

approximate should require as little information about the current state of the virtual world

as possible, and this information should be presented to the machine learner in a compact

form. If the state space representation cannot be compressed enough to effectively learn

the desired behavior, it may be necessary to modify the model we wish to approximate to

better meet the requirements of machine learning. This is usually possible, but there are

some types of decision-making that fundamentally require a lot of state information (e.g.,

the game of chess) and therefore may never be good candidates for regression.

45

www.manaraa.com

To approximate a behavioral/cognitive model, a finite set of discrete state→ action

examples of the model’s decision making needs to be assembled. This can be done by run-

ning internal, undisplayed animations using the behavioral/cognitive model and recording

a subset of its input-output pairs. The selected machine learning technique can then use

this set of examples to perform regression. Regardless of the learning method used, these

examples should represent all regions of the state space, illustrating the entire scope of

decision-making the character may engage in. Moreover, it can be useful to vary the den-

sity of the examples according to the importance of each region of the state space (i.e., how

often that region is visited by the character).

Behavior regression, as formulated in Equation 3.1, can only provide a deterministic

and Markovian approximation. We have found in our experiments that these limitations

are usually acceptable, and perhaps even preferable since it helps keep the regression prob-

lem tractable. Nevertheless, there will be situations where a behavioral/cognitive model

cannot be cast as a deterministic Markovian process. A non-Markovian formulation of our

technique is:

action′ = g(state,context), (3.6)

where context can be either the character’s internal state or the last few actions performed.

However, we usually do not need to explicitly input context, because if there are a few

discrete contexts (e.g., a small number of emotional states or goals) we can use a separate

machine learner to approximate each individually:

action′ = f1(state),

...

action′ = fp(state),

where each learned function fi corresponds to one context. For most behavioral/cognitive

models, though, the decision making is Markovian and we can simply use a single instance

of Equation 3.1.

To achieve a non-deterministic approximation, we use the following formulation of

our technique:

value = h(state,action), (3.7)

46

www.manaraa.com

where value is the expected utility of performing action in the current situation state.

After utilities are computed for a (sub)set of actions, they are ranked and one is selected

probabilistically. Thus a character can stochastically select actions in an intelligent manner.

However, the input dimensionality of Equation 3.7 is higher than that of Equation 3.1, so

we prefer to use deterministic regression whenever possible.

Our technique is actually quite scalable, since a behavioral/cognitive model can be

approximated by several separate machine learners, each of which learn a distinct subset

of the state-action mapping. For example, decision-making in different regions of the state

space may rely on different state information, and therefore these machine learners can use

different state formulations (reducing the dimensionality). Similarly, if a virtual character

has several distinct candidate goals, these can be learned separately. To allow for smooth

switching between learners during animation, the actions recommended by each can be

blended for a period of time. Since our actions are real-vector-valued, this can be performed

through a weighted vector average.

3.2.2 Our implementation:

In our experiments, we created our virtual worlds and characters with the needs of

regression in mind. Therefore, we defined the external state and action spaces to be real-

vector-valued. As a result, no action transformations Ta or T−1
a

are required. However,

we do use a transformation Ts to convert a complete external state STATE into a compact

internal form state. Specifically, only information pertinent to the current character is

retained, and this information is converted into a compact set of features. Most features

are constructed by making angles and distances between characters/objects translation and

rotation invariant according to the current character’s frame of reference. We will discuss

creation of features in more detail later in this paper.

To ensure that the input dimensionality is tractable, we use approximate state infor-

mation whenever possible. While such state approximations limit the accuracy of learning

a mapping, they can significantly reduce the dimensionality and thereby make learning

tractable.

To ensure that we have a representative set of state → action examples, we run

47

www.manaraa.com

several internal (i.e., non-displayed) animations. We regularly sample and record the be-

havioral/cognitive model’s input-output pairs (e.g., every fifth decision). Since we record

examples over several animations, we are likely to get data for most of the state space and

the density of the data corresponds to those regions most often visited by the character. In

our experiments, we used between 5,000 to 65,000 examples. The number necessary varies

depending on how smooth the mapping is and the machine learning method used.

Of course, our technique for regression of behavioral/cognitive models only replaces

the decision-making module of a model. Other important modules such as perception and

motor control need not be altered.

3.3 Comparison of Machine Learning Techniques

Our technique for approximation of behavioral/cognitive models can be used with

any machine learning method, providing that it allows real-vector-valued inputs and out-

puts. This is the case with the most popular and common machine learning methods for

regression.

In the following subsections, we consider several notable machine learning tech-

niques. We examine the strengths and weaknesses of each technique, as they pertain to

approximation of behavioral and cognitive models. Our findings are drawn from several

experiments, as well as theoretical considerations. Our experimental test beds are listed

in Figure 3.3, and encompass a wide range of virtual characters, environments, and target

behaviors. The results of our experiments are summarized in Table 3.1.

3.3.1 The artificial neural network (NN):

The artificial neural network or NN is a global regression technique (i.e., the entire

network contributes in computing an answer). It was the machine learning method of

choice in our previous work [Dinerstein et al. 2004b].

NN proved to work well in many of our experiments, as detailed in Table 3.1. How-

ever, because it is a compact and global technique, it only worked well when the mapping

to learn was fairly smooth and continuous. As a result, it often took several days to design

48

www.manaraa.com

Figure 3.3: We used several test beds in our experiments. These include: (a) 3D asteroid

field navigation; (b) flocking and herding; (c) virtual rugby. We used cognitive models for

asteroid navigation and virtual rugby, and a behavioral model for flocking behavior.

an effective, compact state representation to use as input for the neural net. However, even

with a near-optimal state representation, some of the more complex character behavior was

never learned well since it was still too irregular or of too high dimensionality. Thus scala-

bility is a big issue when using a NN. To combat this, we often found it necessary to train

several NN’s for a single behavioral/cognitive model, each NN covering a distinct sub-

set of the state space. Nevertheless, once adequate regression was achieved, the resulting

animations were smooth and pleasing due to good generalization.

NN requires few training examples (∼ 5,000 to 15,000) since it generalizes well when

learning. This can be a useful property, since generating examples can be computationally

expensive. Moreover, due to powerful generalization, NN tends to blend out noise, mis-

takes, and aliasing in the decision-making examples. However, this powerful generalization

also means that unique local behavior is likely to be blended out. Moreover, behavior dis-

continuities are likely to be smoothed.

3.3.2 The support vector machine (SVM):

The support vector machine or SVM is another global regression technique, and is

related to NN. The only primary difference with respect to our needs between SVM and

NN is that SVM training is guaranteed to achieve global minimum mean-squared-error,

whereas NN training (backpropagation) can converge to a local minimum. We used the

radial basis kernel and epsilon-regression training method in our experiments.

49

www.manaraa.com

k-nn NN SVM Other

Execution time 16 µsec 2 µsec 5 µsec 6 µsec

Asteroids NMSE 0.00042 0.0021 0.0015 0.0038

Storage 1.6 MB 1.2 KB 17 KB ∼ 1 MB

Execution time 13.8 µsec 1.5 µsec 4.8 µsec 5.9 µsec

Flocking NMSE 8.1E−5 0.0013 0.00093 0.0025

Storage 0.88 MB 0.4 KB 4.4 KB ∼ 1 MB

Execution time 15 µsec 1.8 µsec 5 µsec 5.9 µsec

Rugby NMSE 0.00039 0.0021 0.002 0.0035

Storage 1.1 MB 0.6 KB 13 KB ∼ 1 MB

Table 3.1: Typical performance results of our behavioral/cognitive model approximation

technique, utilizing different machine learning algorithms. NMSE denotes normalized

mean-squared-error (i.e., output ∈ [0,1]) between the explicit model and learned approxi-

mation. We used a 1.7 GHz PC with 512 MB RAM in these experiments. In comparison,

our asteroid navigation cognitive model required approximately 0.5 seconds to compute a

decision.

SVM proved to have similar strengths and weaknesses to traditional NN’s. In particu-

lar, with both of these machine learning techniques it proved necessary to use an effective,

compact state space formulation. The only notable benefit we found to using SVM over

NN was that the approximation error was usually somewhat smaller. However, visually,

the results usually appeared indistinguishable from a traditional NN in most cases. This is

likely due to the fact that our real-vector-valued formulation of actions is somewhat tolerant

of noise and error. In our experience, SVM requires two to three times as many training

examples as NN.

3.3.3 Continuous k-nearest neighbor (k-nn):

Continuous k-nearest neighbor is probably the most well-known local machine learn-

ing technique, and is an example of case-based reasoning. Unlike NN and SVM which are

compact, k-nn keeps a library of all examples of the target mapping it has been provided.

To compute an output for a given input, the k examples closest to the input (according

to the Euclidean metric) are found and their associated outputs are distance-weighted and

averaged.

K-nn has proven in our experiments to be very simple to use and work remarkably

50

www.manaraa.com

well for regression of behavioral/cognitive models. This is primarily due to the fact that,

unless the programmer carefully designs the state space representation to provide a smooth

and simple state-action mapping, it is likely that the mapping will be quite rough. As

a result, compact techniques like NN and SVM will fail to learn such a mapping well,

whereas k-nn has no such trouble. However, since k-nn uses explicit examples, a subopti-

mal state space representation may have a higher dimensionality than necessary, requiring

an exponentially-increasing number of examples to populate each additional dimension.

Nevertheless, even with more input axes than necessary, storage requirements are still usu-

ally quite reasonable (e.g., usually < 2 MB). But k-nn does require more training examples

than NN and SVM (∼ 15,000 to 60,000) due to poorer generalization.

We have found that k = 3 works well, as this keeps regression quite local but gener-

alizes sufficiently to provide smooth animation. We use a kd-tree to make the lookup of

cases fast. We scale the input space axes (as described in [Mitchell 1997]) to minimize the

mean-squared-error.

While k-nn has proven capable of performing adequate regression of rough mappings,

such regression of rough mappings may result in jittery animation because of incorrect

generalization of cases. Moreover, k-nn does not generalize powerfully like NN, so it is

more prone to jittering due to noise or mistakes in the behavior examples. To combat these

problems, we have found it potentially useful to temporally filter actions recommended by

k-nn to eliminate high frequencies. For example, with a cognitive model, we examine the

character’s plan to determine whether the character’s next action contradicts the following

action:

if
action1

‖action1‖
• action2

‖action2‖
< γ ≈ 0.4,

then average action1 and action2.

51

www.manaraa.com

3.3.4 Other machine learning techniques:

We also tried several other machine learning techniques, but the results were not in-

teresting enough to warrant individual attention. They either produced poor results or non-

remarkable results at the cost of using an unusual technique. Therefore, we now briefly

summarize the rest of our findings.

Because we achieved such good results with k-nn, we also tried a few other local

regression techniques. First, we tried a lookup table of adaptive resolution. The results

were no better than k-nn, but the software was significantly more complex. We also tried

replacing the simple weighting metric in k-nn with a radial basis function, but the accuracy

was not notably superior.

Alternative forms of NN’s and different SVM kernels performed much like the sig-

moidal NN and radial-basis SVM we discuss above. A linear perceptron (i.e., single-layer

NN) could not adequately approximate the desired behavior in any of our experiments.

Regression with a decision tree performed quite poorly, producing choppy animation.

3.4 Input Selection for Behavior Regression

Input selection (often called feature selection) [Guyon and Elisseeff 2003] is a well-

known problem in machine learning. As discussed previously, all machine learning tech-

niques suffer from the curse of dimensionality. Therefore, it is essential to carefully select

and use only those candidate inputs that are necessary for the system to learn the target

function. However, this is a difficult task, since it is often unclear which inputs are critical

to adequately define a mapping. Thus it is attractive to use an automatic input selection

technique.

For regression of behavioral and cognitive models, we often have many candidate

inputs. This is due to the fact that any given variable contained in the full state of the

virtual world could be a useful input. Therefore, we need an input selection technique that

will robustly handle large sets of candidate inputs, some of which are partially redundant

and many of which are of no value.

Several automatic input selection techniques have been developed by the machine

52

www.manaraa.com

learning and statistics communities [Guyon and Elisseeff 2003]. However, these existing

techniques (in their traditional forms) are not a good fit for our needs. This is due to sev-

eral factors. For example, the most well-known technique, Principal Component Analysis

(PCA), does not consider the target output and therefore cannot differentiate between valid

input data and noise. Many of these techniques are designed for classification rather than

regression, some only reject noisy inputs, or are not robust when there are many candidate

inputs, etc. As a result, we have developed our own custom method for input selection,

which we present in this section.

First, note that we do not address the problem of feature creation in our input selec-

tion method. A feature is a high-level concept, constructed from raw, low-level variables.

Features are usually better inputs than raw variables, because they can define a more learn-

able target function (i.e., smooth enough and of a sufficiently low input dimensionality).

However, there are no mature and well-established theories or techniques for automatic

feature creation [Thornton 2003]. Thus feature creation has traditionally been left to the

programmer. We follow this standard approach, and require that the programmer first spec-

ify a complete set or superset of useful inputs (features). Then our input selection technique

automatically chooses a (suboptimal) minimal subset of inputs. This is useful because it is

often not clear which inputs are needed to minimally but accurately represent a mapping.

For a detailed discussion on creating features for behavioral animation, see [Dinerstein

et al. 2004b].

Our approach to input selection proceeds as follows:

1. The programmer provides a (super)set of the inputs necessary to learn the target

state-action mapping.

2. Determine linear correlation between the candidate inputs and output by computing

the Pearson correlation coefficient: R(i) = (cov(Xi,Y))/(
√

var(Xi)var(Y)). Reject

all candidate inputs Xi where R(i)2 < α ≈ 0.005.

3. Perform forward selection [Guyon and Elisseeff 2003] on all remaining candidate

inputs. Specifically, start with no inputs. Then loop through all of the inputs, testing

each to determine which one provides the most improvement in mean-squared-error.

53

www.manaraa.com

The winning input is selected for use. Iterate until no additional inputs can be added

that decrease the mean-squared-error.

4. (Optional) — Perform principal component analysis to project the selected inputs

onto a manifold of lower dimensionality.

The reason we list PCA as optional is because we have found it is not useful if the

programmer has supplied a set of good features. This is because the features may represent

non-redundant information.

Our approach is interesting because we first perform a fast and simple rejection test

using R(i)2, which seeds and expedites the more complex forward selection algorithm.

This also helps make selection more robust by initially rejecting inputs with no clear statis-

tical correlation to the output.

Our custom input selection method is a combination of existing techniques: correla-

tion, forward selection, and PCA. This combined approach is effective because we leverage

the strengths of each technique, while side-stepping many of their weaknesses.

So that the Pearson correlation R(i)2 can be computed quickly, we use the approxi-

mation detailed in [Guyon and Elisseeff 2003].

3.5 Summary and Discussion

We achieved our best results by performing regression with k-nn, using k = 3. This

is because local regression makes it simple to accurately approximate any given behav-

ioral/cognitive model, as long as enough state-action mapping examples can be gathered to

cover the state space. While k-nn is slower to execute than compact techniques (like NN),

it can still usually be computed in under 20 microseconds on a 1.7 GHz PC. Because its

execution is near fixed-time (using a balanced kd-tree for case lookup), and it generalizes

using known behavior examples, our model approximation technique with k-nn provides

a solution to the two problems listed in the introduction. Note that novel paths through

the state space are possible, and thus novel behavior sequences, but no immediate behavior

except blending of local cases is possible.

54

www.manaraa.com

However, we did find two circumstances under which compact regression techniques

were more useful. First, if there are few state-action examples of the desired behavior

compared to the input dimensionality, the state space may not be adequately populated

with examples to use k-nn. Second, if there is notable noise in the state-action examples,

it can cause high-frequency dithering in an animation when using k-nn. In contrast, with a

compact technique like NN or SVM, such noise is usually averaged out during training.

An interesting benefit of our regression technique is that, since the decision-making

examples are generated off-line, they can be of very high quality. In other words, the

character has a lot of CPU time with which to make its decisions. As a result, our technique

allows a character to exhibit significant intelligence on-line with the use of little CPU.

Our regression technique does have some weaknesses which are important to discuss.

First, due to generalization of state-action examples, it is difficult or impossible to guar-

antee that a character will never generalize cases in such a way that unrealistic behavior

is the result. Nevertheless, this weakness has not proven a significant problem in our case

studies. Second, our technique cannot be used to approximate any behavioral/cognitive

model because of the curse of dimensionality. Behaviors that require a large amount of

state information are not good candidates for our technique.

Our custom input selection method greatly simplifies for the programmer the process

of machine learning a behavioral/cognitive model. While our input selection method does

not create features (an open problem), it does quickly and accurately select a minimum

set of inputs from a superset, in a way oriented toward the requirements of regression of

behavioral/cognitive models. Although our method is suboptimal (like most input selection

techniques), it has performed nearly optimally in our experiments.

55

www.manaraa.com

56

www.manaraa.com

Part III

Online Adaptation for Interactive

Characters

This part addresses Problem #2 listed in Chapter 1: lack of online adaptation for

autonomous virtual characters.

Chapter 4 introduces a technique for incremental action prediction. Specifically, the

character records observations of the behavior of the human user. A model is created from

these observations. While learning is taking place, this model is used to predict the future

behavior of the user, allowing the character to adaptively choose actions to perform. This

chapter was published in the journal Computational Intelligence and can be referenced as

follows.

Jonathan Dinerstein, Dan Ventura, and Parris K. Egbert. “Incremental action

prediction for interactive autonomous agents”. Computational Intelligence,

21(1):90–110, 2005.

Chapter 5 builds off of the results given in Chapter 4, presenting a multi-level adap-

tation technique. Each layer is composed of a separate learning method. These learning

methods influence (from low to high level) the character’s action selection, task selection,

and goal selection. An imitation method is also presented whereby the character can imitate

novel behavior performed by the human user. Chapter 5 has been accepted for publication

in ACM Transactions on Graphics. It can be referenced as follows.

Jonathan Dinerstein and Parris K. Egbert. “Fast multi-level adaptation for

interactive autonomous characters”. ACM Transactions on Graphics, 24(2),

2005.

57

www.manaraa.com

58

www.manaraa.com

Chapter 4

Fast and Robust Incremental Action Prediction for

Interactive Agents

Computational Intelligence, Vol. 21, No. 1, pp. 90–110, 2005.

Abstract: The ability for a given agent to adapt on-line to better interact with an-

other agent is a difficult and important problem. This problem becomes even more difficult

when the agent to interact with is a human, since humans learn quickly and behave non-

deterministically. In this paper we present a novel method whereby an agent can incremen-

tally learn to predict the actions of another agent (even a human), and thereby can learn to

better interact with that agent. We take a case-based approach, where the behavior of the

other agent is learned in the form of state-action pairs. We generalize these cases either

through continuous k-nearest neighbor, or a modified bounded minimax search. Through

our case studies, our technique is empirically shown to require little storage, learn very

quickly, and be fast and robust in practice. It can accurately predict actions several steps

into the future. Our case studies include interactive virtual environments involving mixtures

of synthetic agents and humans, with cooperative and/or competitive relationships.

Keywords: autonomous agents, user modeling, agent modeling, action prediction, plan

recognition.

59

www.manaraa.com

4.1 Introduction

The use of intelligent software agents is becoming increasingly pervasive. This is

especially true in interactive software, where one or more human users may interact with

the system at any time. Examples of such agents include training simulator and computer

game characters, virtual tutors, etc. However, an important limitation of most agents in

interactive software is that they are usually static. In other words, the agent’s behavior does

not adapt on-line in response to interaction with a human user.

Effective and rapid on-line adaptation of an agent’s behavior would be extremely use-

ful for many applications. For example, consider a training simulator where a virtual char-

acter is an opponent to a human user (see Figure 4.1). By learning on-line through interac-

tion with the human, the character could adjust its tactics according to those of the human

it is competing against and thereby become a more difficult, customized opponent.

One primary reason for the lack of use of on-line learning for interactive agents is

that learning from and about a human is difficult, due to non-deterministic behavior and a

non-stationary policy. Also, humans learn quickly and are impatient, so an agent must also

learn quickly to provide a stimulating and effective experience for the user. These issues

are discussed in more detail in Section 4.3.

In this paper, we present a novel machine learning method for fast adaptation of in-

teractive agents. Specifically, our technique allows an agent to learn to predict the future

actions of a human user (or another synthetic agent). We take an observation-based ap-

proach which operates through case-based reasoning. As the interaction proceeds, the

agent records state-action pairs of the human’s behavior. Each state-action is treated as

a single case. The case library represents a non-deterministic mapping of states to ac-

tions. We generalize these state-action cases using either continuous k-nearest neighbor or

a modified minimax search. These alternate approaches to generalization allow us to adjust

a confidence/caution tradeoff as we see fit.

The agent can predict several steps into the future by iteratively predicting using the

previously predicted state. That is, for each time step into the future, we predict each

agent’s next action; the predicted actions are then used to predict the next state, which is

in turn used for the next iteration of action prediction. Finally, once the desired length of

60

www.manaraa.com

prediction has been computed, the agent uses this information to help in selecting its own

actions. Note that our technique can learn quickly, being case-based, and can naturally

handle non-determinism in the behavior it is learning. Also, old cases are deleted so that it

can learn non-stationary behavior. Further, our technique can be used for either cooperative

or competitive relationships between an agent and human, since our learning technique

provides the agent with very general information.

We begin by surveying related work. We then examine the issues involved in on-line

learning for interactive agents and propose a set of requirements for such a learning method.

We then present our technique for rapid adaptation of interactive agents through action pre-

diction. Finally, we conclude with our experience from three case studies. Our first two

case studies are based on a computer game/simulation of a sport like rugby or American

football. We chose this interaction setting since athletics is interesting for studying co-

operative and competitive behavior, and is known to be a difficult problem for machine

learning [Stone 2000]. Our first case study is a simplified problem, whereas the second is

significantly more complex. Our third case study is of Capture The Flag using the Gambots

[Kaminka et al. 2002] test bed.

4.2 Related Work

Our case-based action prediction technique overlaps with many topics currently of

interest in AI and machine learning, such as plan recognition, learning in multi-agent sys-

tems, and agent/user modeling. While our method is novel, it was inspired by previous

work which we now review. Note that our method falls within the bounds of fictitious play

theory [Stone and Veloso 1997].

The use of AI techniques in animating virtual characters has long been popular [Reynolds

1987]. By making a virtual character an autonomous agent, it can be self-animating. This

topic includes all autonomous agents in interactive virtual environments, such as charac-

ters in training simulators and computer games. On-line learning for interactive virtual

characters has only begun to be addressed [Evans 2002; Tomlinson and Blumberg 2002;

Blumberg et al. 2002], and is currently limited to master-slave relationships and learning

61

www.manaraa.com

high-level behavioral guidelines through immediate and direct instruction and feedback

from the human user. Thus these techniques do not solve the problem we are addressing.

A paper that addresses many of the same concerns we do is [Isbell et al. 2001], where

an agent in a text-based distributed computer game — a “MUD” — learns to pro-actively

interact with the human users in a desirable manner. Users provide feedback on the agent’s

behavior, guiding its learning. The agent learns through a modified form of Q-learning,

constructing value tables through linear function approximation. This previous work fo-

cuses on human-agent interaction in a social context, whereas we are interested in virtual

environments where the human and agent interact in a physically oriented manner.

A well-known technique for learning in multi-agent systems is minimax-Q [Littman

1994]. This technique is a modification of Q-learning, designed for two agent zero-sum

Markov games. While effective and formally sound, this technique does not address the

problem of interest in this paper because minimax-Q requires too much time and too many

experiences to learn (in a simple soccer environment, one million steps).

An interesting work performed in action prediction is [Laird 2001]. In this technique,

the agent attempts to predict the human’s future behavior by assuming the human will

behave exactly like the agent would in the same situation. This interesting and simple

technique has proven effective in practice for a complex virtual environment. However, the

agent does not learn about the human’s behavior, so it has no ability to adapt. Note that

action prediction and plan recognition are often considered to be the same problem.

Agent modeling has been a popular approach to learning in multi-agent systems for

some time [Bui et al. 1996; Vidal and Durfee 1997; Weiss 1999]. One such technique is

M* [Carmel and Markovitch 1996a,b], a generalization of minimax. Rather than assum-

ing the opponent will always choose the optimal action, the opponent’s observed behavior

is modeled using a neural net. Thus, given a state as an input, the network produces a

deterministic prediction of the opponent’s next action. While interesting, this approach is

not useful for our needs, since the neural net may require too much time and too many

examples to learn. Also, the neural net will produce deterministic predictions (i.e., will

average conflicting state → action examples), and thus is likely to make notable mistakes

with regards to human behavior which is often highly non-deterministic.

62

www.manaraa.com

Another modeling-based technique is Maximum Expected Utility (MEU) [Sen and

Arora 1997], also a modification of minimax. The opponent is modeled such that, for any

given state, each candidate action has a probability of being selected. Thus, the expected

utility of an action performed by the learning agent can be computed as the weighted sum

of the rewards with respect to all the actions the opponent can select (where the weights are

the probabilities). Thus, unlike M*, this technique does not ignore worst-case scenarios and

does not produce deterministic predictions. However, while this is an interesting approach,

it can require massive amounts of storage, is infeasible for continuous state and/or action

spaces, and the probabilities can take a long time to learn. Also, if we wish to determine

long-term utility (predict far into the future), our search will likely be intractable.

In [Tran and Cohen 2002], an agent models the reputation of sellers in an electronic

marketplace to more optimally engage in trade. This technique, while interesting and use-

ful, does not address the problem of interest in this paper since it only models a high-level

aspect of the other agents, rather than their actual behaviors.

One of the most well known agent modeling techniques is the Recursive Modeling

Method (RMM) [Gmytrasiewicz and Durfee 2000, 2001]. In RMM, the fact that an agent

knows that the other agent is learning about it is modeled explicitly. Specifically, an agent

models the other agent, but then must also model how the other agent will change due to

the fact that the first agent has learned. This process can continue for some time, while each

agent continues to learn models of the current behavior of the other. Thus each agent con-

tains a recursive set of models, up to a pre-specified depth. In [Gmytrasiewicz and Durfee

2000, 2001], RMM is implemented using a tree of payoff matrices. Because of this, stor-

age and computational requirements increase exponentially, and therefore this technique

may not be useful for many practical settings. Also, RMM is limited to discrete state and

action spaces. Some initial work has been performed in flattening RMM into a single level

learning technique [Hu and Wellman 1998], but this problem is still unresolved.

Recent work [Rovatsos et al. 2003] in agent modeling has examined open systems:

multi-agent systems where agents enter/leave quite often, and specific agents often never

return to the system. To cope with these issues, agents are classified and then each class is

63

www.manaraa.com

modeled. This is a general enough concept that it could be used with most agent modeling

techniques.

Recently, Case-Based Plan Recognition (CBPR) [Kerkez and Cox 2003] was intro-

duced. Unlike most previous plan recognition methods, CBPR does not require that a

plan library be constructed a priori. State-action cases of an agent’s observed behavior

are recorded and then used to predict future behavior. The state-actions are expressed in

first-order logic and are generalized by finding the single case whose associated state most

closely matches the query state. However, while CBPR has proven to be interesting, it has

some weaknesses that make it inappropriate as a solution for the problem of interest in this

paper. Most notably, CBPR is only about 10% accurate in practice for toy problems, and

can only predict one time step into the future (prediction chaining is ineffectual due to low

accuracy). Further, CBPR makes deterministic predictions, and it cannot handle continuous

state and action spaces (which many interactive environments, such as training simulators,

have).

Closely related to agent modeling is user modeling [Zhu et al. 2003]. A human user

is modeled so that software or an agent can more optimally serve him or her. This is

closely related to the problem of interest in this paper. However, most existing techniques

in this domain are designed for user interface adaptation, and thus model the user in a

very specific/limited manner. In this paper, we are interested in autonomous agents that

proactively interact with a user (according to their own goals, cooperative or competitive),

and also engage in activities entirely independent from the user.

Our method is also somewhat related to agent programming by demonstration [Mataric

2000; Nicolescu 2003], where an agent learns how to behave from human demonstrations.

In these techniques, a model is created of the human’s behavior for the purpose of re-

producing it to control the agent. Similarly, our method is somewhat related to imitation

learning [Price 2002], where an agent learns by observing and imitating other agents (syn-

thetic and/or biological). However, these techniques do not address the problem of interest

in this paper.

There is need for a technique that allows an interactive agent to rapidly learn on-line

to better interact with a unique human user. As discussed in Section 4.3, this adaptation

64

www.manaraa.com

should be robust, require no explicit feedback from the human user, and learn fast enough

to not tax human patience. Our contribution is a novel machine learning method that fulfills

these needs.

4.3 The Interactive Agent Learning Problem

As mentioned previously, on-line learning for agents that interact in real-time with

a human is a difficult problem. We have identified several requirements for an effective

interactive agent learning technique, which are detailed below.

Requirements for an Effective Interactive Agent Learning Technique:

1. Fast learning. Human time and patience are scarce resources. Further, slow learn-

ing will not make an agent a more difficult opponent, or effective teammate, etc.

Therefore, learning must occur quickly based on few experiences.

2. Learn in the presence of non-deterministic and non-stable behavior. In other words,

the learning technique must be effective when the agent is interacting with a human.

3. No explicit human feedback. Requiring the human to provide feedback may be un-

natural for many types of interactions, and may interrupt the flow of the interaction.

Therefore, no explicit human feedback should be required.

4. Must perform at interactive rates on a PC. For the learning technique to be as widely

useful as possible, it must be practical for interactive use on current PC CPUs (e.g.,

2 GHz). Further, use of storage must be reasonable.

5. Support both cooperative and competitive relationships. While this is not truly a

requirement, it is a desirable property so that the learning technique will be as broadly

useful as possible.

4.4 Technique Description

We fulfill the requirements listed in Section 4.3 by using a combination of observation-

and case-based approaches to construct a case-based model of the human’s behavior. This

65

www.manaraa.com

model is then used to predict the human’s future actions, allowing the agent to predict the

utility of its own candidate actions.

Our technique is summarized in Figure 4.2a. As the interaction proceeds, the agent

records state-action pairs of the human’s behavior. Each state-action is treated as a sin-

gle case. This case library models the human’s decision making, representing a non-

deterministic mapping of states to actions. We generalize these state-action cases using

either continuous k-nearest neighbor or a bounded minimax search. These alternate ap-

proaches to generalization allow us to adjust a confidence/caution tradeoff as we see fit.

As a formal overview, the use and execution of our adaptation technique involves the

following steps:

1. Formulate a compact internal representation of the state space, S, and a logically

structured internal representation of the action space, A.

2. Define a state-action case library: L = {(sss,aaa)i}. Partition the library into regions

for fast case lookup: PS = {ri} such that ri ∩ r j = /0 ↔ i 6= j,∪iri = S. Initialize the

library with state-action cases of generic behavior. Set time, t := 0.

3. As the interaction proceeds, observe and record state-action pairs. First, at time t, get

(ssst ,aaat). Next, determine r j such that (ssst ,aaat)∈ r j. Finally, replace argmin(sss,aaa)i
(M((sss,aaa)i))

with (ssst ,aaat), where M is a case usefulness metric with positive scalar weights α and

β : M((sss,aaa)i) = −α ·age+β ·d((sss,aaa)i,(ssst ,aaat)). d is an appropriate distance metric.

“age” is the number of time steps for which case i has existed in L.

4. Predict the human’s (or other agent’s) future behavior by generalizing state-action

cases: ∼aaaH
t+1 = f (ssst ,L). After predicting, the agent uses this information in selecting

its own action to perform: aaat+1 = g(ssst ,∼ aaaH
t+1). Increment current time, t := t +1.

5. Repeat steps 3–5 for the duration of the interaction.

Note that steps 1 and 2 are performed by the designer/programmer in preparation for

execution.

It is important that we predict the human’s actions several steps into the future, so that

our agent can maximize its utility based on non-local information. As shown in Figure 4.2b,

66

www.manaraa.com

we do this iteratively by predicting using the previously predicted state. At each iteration,

we either compute, predict, or assume the actions of all agents in the environment. The

simulated actions of the predicting agent are either assumed or computed without the aid

of prediction to avoid branching or recursion (although we discuss in Section 4.4.4 how

branching can be used if desired to increase prediction accuracy). In our case studies,

we have found that predicting between 5 to 15 steps into the future works well, is accurate

enough to be useful, and is tractable. Finally, once the desired length of prediction has been

computed, the agent uses the prediction in selecting its own actions, whether it intends to

cooperate with or compete against the human.

Our goals for our learning method are somewhat different than in traditional machine

learning. Where most traditional techniques are designed to learn well from scratch, our

technique is designed to learn fast to adapt an agent to better interact with a unique human

user. As a result, we rely somewhat on prior knowledge. Specifically, we assume that the

programmer provides a reasonably compact state definition, and (if using minimax case

generalization) a gradient fitness function.

4.4.1 State and Action Representations

Most interactive environments involving both software agents and human users are

virtual environments: synthetic digital worlds that define the roles and possible actions of

the human users and agents. Some of these virtual environments are presented to the user

visually through computer graphics (e.g., training simulators, computer games, etc). In our

case studies in this paper, we focus on this sort of environment. Thus the current state is a

snapshot of the configuration of the virtual world. One benefit of this sort of environment

is that sensing the current state is easy. However, our learning technique is not limited to

this subset of interactive environments. As long as the current state and the behavior of the

other agent (which we are modeling) can be perceived, our learning technique is applicable.

For any given agent and environment, the state space may have to be continuous.

This is because, in a stimulating environment where the agent and human are competing or

cooperating intimately, it is possible that a small difference in state can determine a large

difference in behavior. A continuous state space can also help in achieving a realistic virtual

67

www.manaraa.com

environment. For example, a discrete state space seems very unnatural for a car driving

training simulator. Therefore, our technique uses a continuous internal representation of

states (and actions). Since this is a very general representation, all continuous and most

discrete state spaces are supported.

We represent the state space S as a real-valued, n-dimensional feature vector. Thus S⊂
R

n, and a state sss ∈ R
n is a point within this feature space. These features can be specified

manually, or automatically discovered through principal component analysis. We assume

that the designer has by some means provided a good, compact state representation for the

given agent and environment. In other words, we assume that the state space dimensionality

n is small. This is important because a compact state space will help the agent adapt quickly

and better generalize what it has learned. However, our technique still operates successfully

with a non-compact state representation, though learning may not be as fast as desired.

As an example of a compact and effective state representation, in our 1-on-1 simplified

rugby case study, the state is simply the translation-invariant separation of the agent and

the human’s avatar.

The state definition should be organized in such a way that states that are similar

(according to the Euclidean metric) are usually associated with similar or identical actions.

This makes generalization possible.

Like states, actions are internally represented by real-valued vectors, aaa ∈ R
m, so that

both discrete and continuous action spaces are supported. If possible, the action space

should be defined in such a way that actions can be combined into some sort of “interme-

diate” action (e.g., a ‘left’ vector [−1,0] and a ‘forward’ vector [0,1] become a ‘diagonal’

vector [−1/
√

2,1/
√

2]). More formally, it is useful if the actions are organized such that

they can be blended into valid intermediate actions using valid binary operators, for exam-

ple, aaa′ = aaa14aaa2 (for some operator 4). As we detail shortly, blending is required for case

generalization through continuous k-nearest neighbor. However, blending is not performed

with generalization through minimax, and thus is not strictly necessary.

68

www.manaraa.com

4.4.2 Learning State-Action Cases

The observed state-action pairs of the human’s behavior are recorded on-line. That

is, at each time step, the current state and the action selected by the human are saved. For

simplicity, we use a small constant time step for sampling the human’s behavior. For exam-

ple, in our complex rugby case study, the time step matches the frame rate of the computer

graphics animation (15 Hz). These cases represent a discrete sampling of a Markovian

model of the human’s behavior. While many cognitive scientists postulate that human be-

havior is non-Markovian [Nadel 2003], Markovian models have often proven effective in

the agent/user modeling literature (for more information on this topic see [Carberry 2001;

Kerkez and Cox 2003]).

For our method to be entirely accurate, it would be necessary to record any salient

features of the human’s internal state as part of the current state in each state-action pair.

However, the human’s internal state is likely inaccessible. Thus our compact state space

may be incomplete. Nevertheless, an approximate state space is acceptable; as we empir-

ically show in the experimental results section, the accuracy of our technique is sufficient

to produce effective agent behavior.

Each recorded state-action pair is treated as a case in a case-based reasoning engine.

A library of useful cases is maintained. Since the state space is continuous, the library is

organized as a (possibly hierarchical) partitioning of the state space to facilitate fast lookup

of cases. Automatic partitioning techniques (e.g., a kd-tree) can be used to great effect, or

partitioning can be performed by the programmer so that human insight may be applied.

The library and its partitioning are defined more formally in Part 2 of the overview given

in Section 4.4.

The case library is originally populated with state-action examples of “generic” hu-

man behavior. These are gradually replaced with user-specific examples, as they are ob-

served by the character. In particular, a limited number of cases are allowed for each region

of the state space, and (nearly) duplicate cases are not allowed. Cases are selected for re-

placement based on their age and unimportance. In other words, if a case was recorded

long ago, and/or is very similar to the new case we are adding (in both the state and ac-

tion), it is likely to be removed. Thus the character has the ability to “forget”, which is

69

www.manaraa.com

very important in learning something as non-stationary as human behavior. Also, since

any given region of the state space will always contain the same number of cases, there is

no need to repartition on-line. This can limit the agent’s ability to learn detailed informa-

tion in unanticipated regions of the state space, but allows for simple and fast maintenance

of the case library. The case replacement procedure is defined more formally in Part 3

of the overview given in Section 4.4. In our implementation, we use the Euclidean met-

ric for computing the distance between two cases. Specifically, the similarity metric is:

d((sss,aaa)i,(sss,aaa) j) = ‖sssi −sss j‖+‖aaai −aaa j‖.

4.4.3 Generalization of Cases

To predict the human’s future behavior, the library of cases must be generalized so

that, for any given query state, an associated action can be computed. Note that an impor-

tant question about how to generalize is whether to focus on confidence or caution. For

example, if we are confident in our acquired knowledge, we can attempt to strongly exploit

our knowledge by assuming that the human will behave as he usually has done when in/near

the current state. However, this will ignore unusual behaviors, even worst-case scenarios.

Alternatively, we can be cautious and assume that the human will choose the worst-case

action (from the agent’s perspective) from those actions he has previously chosen in/near

the current state. Both approaches have their merits, and we have developed generalization

techniques for both.

To focus on exploitation (i.e., exercise confidence in our acquired knowledge), we use

the continuous k-nearest neighbor algorithm, as shown in Figure 4.3a. That is, the k cases

closest to the query state (according to the Euclidean metric) are found and a distance-

weighted normalized sum of the associated actions is computed:

∼ aaa =
∑k

i=1(wi ·aaai)

∑k
i=1 wi

, where wi =
1

d2
i

.

In our case studies we have found 1 ≤ k ≤ 3 is effective. k = 1 is good for exactness,

as no blending of actions occurs. However, k = 3 is good if there is no closely matching

case, and/or for attaining a more general impression of the human’s behavior. Therefore,

it is useful to vary k depending on the nearness of the closest case, and/or the required

70

www.manaraa.com

specificity of a prediction. Also, it is helpful to normalize the axes of the state space, so

that they will contribute equivalently in computing distance.

To focus on caution, we use a bounded minimax search, as shown in Figure 4.4. The

k cases closest to the query state (according to the Euclidean metric) are found. Then, the

utility of the k actions associated with the retrieved cases is computed using the agent’s

own fitness function. Finally, the action that results in the minimum fitness for the agent is

assumed to be the one the human will select. More formally:

∼ aaa = arg min
aaai∈k neighbors

(fit(sss,aaai)).

What is unique about our modified minimax search is that we do not consider all possible

actions. Rather, we consider only those actions we have previously seen the human per-

form in that region of the state space. This not only makes minimax tractable for large or

continuous state and action spaces, but also still allows us to exploit our knowledge of the

human at the same time as we focus on caution. In addition, note that the information that

must be learned for our minimax approach can be learned very rapidly, since we only need

to observe some representative cases of the human’s preferred behavior.

When k = 1, the minimax approach degenerates to 1-nearest neighbor. That is, it

predicts that the human will do exactly what was done previously in the closest matching

case. However, as we increase k, this technique becomes more cautious. In fact, in the limit

as k →∞, our bounded minimax becomes a standard minimax (assuming that we have cases

to cover all possible actions). In our case studies, we have found that small values of k (e.g.,

≤ 3) are useful when we want to be more cautious than in k-nearest neighbor, yet still wish

to strongly exploit our knowledge. Alternatively, we have found that larger values of k

(e.g., 5 ≤ k ≤ 16) are useful for being extremely cautious.

Only our minimax approach to generalization requires a fitness function; k-nearest

neighbor does not. Further, it must be a gradient fitness function. In other words, in-

formative feedback should be given for all states, with fitness leading toward goal states.

However, gradient fitness functions are well known, and have been used to great effect in

reinforcement learning for speeding up convergence [Sutton and Barto 1998]. An interest-

ing point we discovered in our experiments is that, sometimes, it is better to use a fitness

71

www.manaraa.com

function that directly measures the human’s fitness, rather than the agent’s. Using such a

fitness function, minimax would seek to maximize rather than minimize fitness. We have

found this approach to be preferable if the human’s and agent’s goals are not necessarily

exact opposites.

While generalization through k-NN blends actions (for k > 1), minimax does not.

As a result, our action prediction method is still applicable for agents with non-blendable

actions, though generalization must be performed through minimax (or k-NN with k = 1).

Generalization of cases is introduced formally in Part 4 of the overview given in Sec-

tion 4.4. We use k-NN or bounded minimax for the prediction function f discussed in the

overview.

4.4.4 Using Case-Based Action Prediction in Practice

Our learning technique can be used by agents that cooperate with or compete against

the human user. This broad applicability is possible because our technique provides an

agent with very general information (predictions of the human’s behavior). How to use

this information is up to the agent. Even our minimax approach to generalization can be

used for cooperation, by seeking to maximize the human’s fitness function, or assuming the

human will seek to maximize the agent’s own fitness function. In other words, the agent

and human are trying to maximize a shared fitness function.

The accuracy of the learning in our technique has proven to be very promising (see

the figures and tables in Section 4.5). It also has a small memory footprint (usually ≤ 2

MB per agent). Also, the performance of our technique is well within interactive speeds

(see Table 4.3). If desired, there are ways to further speed up our technique at the cost of

accuracy. These include the following:

• Predict actions for only a subsample of time steps into the future, holding constant in

between (e.g., predict a new action once every 4 time steps).

• Rather than predicting, assume constant actions for some agents (e.g., null or last

observed action).

72

www.manaraa.com

• Ignore agents that will likely have no effect on the current decision making of this

agent (e.g., only predict actions for those other agents that are spatially close to this

agent in the environment).

Note that the function of our action-prediction technique is to supply an agent with

supplementary information. Therefore, the way this information is used can be unique for

any given agent. For example, given an n-step prediction of the human’s actions into the

future, the agent could perform an informed tree search to plan its own actions through de-

liberation. Alternatively, this n-step prediction could be used as extra inputs into a reactive

action-selection method, even a black box implementation.

An alterative way to use action prediction (rather than predicting an entire chain of ac-

tions given an initial state, as in Figures 4.3b and 4.4) is for the agent to request individual

predictions for certain states. This can be especially useful for agents that perform decision

making through deliberation with a tree search, as the agent can request information spe-

cific to any state it encounters while deliberating. However, this requires more CPU than a

single linear prediction, and it has not proven to be significantly more accurate in our case

studies.

Our action prediction technique is not limited to small environments with only one hu-

man. Indeed, it may be appropriate for very complex environments of many agents (more

than one human user, etc). However, for adaptation to perform well, the state space defi-

nition must always be reasonably compact. This circumvents the curse of dimensionality,

thereby allowing our adaptation technique to be used for interesting, difficult problems.

To further counteract the curse of dimensionality, we have found it useful to modular-

ize the action prediction where possible. For example, consider an agent who can perform

two independent actions simultaneously (e.g., walk in a given direction while looking at

something else). We can split this into two separate problems, with the adaptation for each

performed separately. This can help simplify both the state and action spaces. It may also

be useful to split up the state space into uncorrelated or independent regions.

Recall that the state-action model of the human’s behavior is initialized to “generic”

human behavior. This generic information is then gradually forgotten as new user-specific

73

www.manaraa.com

cases are gathered. Specifically, we replace all generic cases before replacing any user-

specific cases. Also, for generalization through k-nearest neighbor, we more heavily weight

user-specific cases over any remaining generic cases.

It is possible to share all acquired knowledge between all adapting agents in a given

environment. In other words, we can use a single repository for acquired knowledge, which

all adapting agents share. This is useful for reducing storage requirements, as well as

allowing every agent to behave optimally according to what has been learned. However,

this will not be plausible for agents in all categories of multi-agent systems, especially

physical agents with limited communication abilities.

We have presented two separate generalization techniques, one focused on confidence

and the other on caution. This tradeoff can be further adjusted by varying k, as shown

in the results section. Because this tradeoff represents the “personality” of the agent, it

is not possible to formally dictate which approach is best. Indeed, as we show in the

results section of this paper, both techniques have unique benefits from a fitness perspective.

Therefore, the choice of how to generalize is left up to the agent designer. Indeed, this could

even be altered dynamically for an agent, depending on the most important goal of the agent

at the moment and/or what strategy is proving most effective. Moreover, each technique

has unique requirements: if action blending is not possible, minimax must be used; if a

gradient fitness function is not available, k-nn must be used.

4.5 Experimental Results

We now present our case studies in detail. In all of our case studies, we used the

L2-norm for our distance metric d. Specifically, d((sss,aaa)i,(sss,aaa) j) = ‖sssi −sss j‖+‖aaai −aaa j‖.

Also, we tuned the parameters of the case usefulness metric M (α and β) such that differ-

ence between cases was more important that the amount of time a given case had existed

in the library. For each adapting agent, the action selection function g was composed of an

A* [Russell and Norvig 2003] implementation and our action prediction technique. Specif-

ically, at each time step, A* was used to compute a new plan with respect to the human’s

or opponent’s predicted actions. The agent then performed only the first action in that plan.

74

www.manaraa.com

The reason we continually reformulated plans was to avoid poor agent behavior due to

incorrect action predictions.

4.5.1 Simplified Rugby Case Study

Our first case study involves two software agents engaging in a sport such as rugby

or American football (see Figure 4.5). In this game, the “ball runner” agent attempts to

score by running with the ball to a designated end of the playing field. The “tackler” agent

attempts to stop the ball runner by tackling him. The environment is discrete, divided into

squares. Each player can be in only one square at a time. If the two agents move to the

same square, a tackle (end of game) occurs.

The game field is 9 squares wide (movement outside of this boundary is not allowed),

with a scoring zone at the top of the field. The possible actions available to the software

agents are moving to an adjacent square (including diagonally), or staying in place. Thus

there are nine total possible actions. As the game proceeds according to a fixed discrete time

step, the agents act simultaneously once per time step. There is no explicit communication

between the agents. The current state is fully perceivable to the agents within the bounds

of sensory honesty: even though the agents’ sensors are virtual, they are forced to perform

realistically like physical sensors — see [Isla et al. 2001] for a detailed discussion. As a

brief example, an agent is not allowed to see through the back of its head, or through solid

objects in the environment.

For the learning technique, the compact state definition is simply the translation-

invariant separation of the two agents. Therefore, it is a two-dimensional vector of integer

values. An action is stored as a two-dimensional integer velocity vector. Thus k-nearest

neighbor can blend several actions into a valid action. After predicting an action with k-NN,

its components are in floating point; we round to get integer components.

At the start of each game, the agents are placed in the center of the field, one square

apart, as shown in Figure 4.5. The ball runner has the ball, and attempts to score by running

past the tackler to the far end of the field. The tackler agent performs its decision making

through A* [Russell and Norvig 2003], whereas for the purpose of experimentation the

behavior of the ball runner is exhaustively enumerated. Moreover, only the tackler adapts.

75

www.manaraa.com

k = 1 k = 2 k = 6 k = 12

k-NN 69.16 : 1 25.61 : 1 23.69 : 1 29.825 : 1

Minimax 69.16 : 1 239.5 : 1 963.8 : 1 1729 : 1

Table 4.1: Average ratio of tackles to scores for all behaviors of length 7. With no learning,

the ratio was only 5.54 : 1.

k = 1 k = 2 k = 6 k = 12

k-NN −0.0553 −0.0625 −0.0629 −0.0444

Minimax −0.0553 0.00957 0.0314 0.0325

Table 4.2: Average forward progress made by ball runner before end of game for all behav-

iors of length 7.

If prediction information is available, the tackler uses it in its deliberation. However, if

prediction information is not available, it assumes the ball runner will continue to perform

the last observed action. The tackler’s fitness function simply directs it to get as close to

the ball runner as possible, without letting the ball runner pass it by (and thereby be able to

score). This fitness function is given in pseudo-code in Figure 4.6.

We performed several experiments in this case study, varying k and the generalization

technique used. Note that in all these experiments, we forced the ball runner to exhaustively

try all behaviors of length seven (i.e., a game lasting seven time steps). Each behavior was

presented to the tackler three times; the first two times to learn, and then on the third itera-

tion we measured the performance of the tackler. We gathered statistics on the effectiveness

of the tackler’s learning, with regards to ratio of tackles vs. scores, and to average forward

progress made. These results are presented in Tables 4.1 and 4.2.

With no learning for the agent (i.e., no observed state-action cases added to the agent’s

action prediction library, just the default cases), the ratio of tackles to scores is only 5.54:1.

This is significantly lower than the ratios achieved by using our learning technique.

Note that for k = 1, the experimental results are equal for both generalization tech-

niques, because the two techniques are equivalent when only using a single case. Also

note that k-NN effectively holds the ball runner to negative forward progress, whereas our

bounded minimax allows positive forward progress for k > 1. This is because, while k-NN

76

www.manaraa.com

Simplified Rugby Virtual Rugby

Action selection freq. 1 Hz 15 Hz

Action prediction time 21 µ sec 30 µ sec

Total avg. CPU usage 0.12% 6.82%

Memory usage � 1 MB ≤ 2 MB

Table 4.3: Typical performance results of action prediction in our two rugby case studies

(for one adapting agent). Case learning time is negligible, and therefore is not listed. We

used a 1.7 GHz PC with 512 MB RAM.

strongly exploits (especially for smaller values of k), minimax is more conservative. How-

ever, minimax allows the human to score less often than k-NN, since it more effectively

covers worst cases. As can be seen in the tables, minimax becomes more conservative and

cautious as k increases. k-NN can be less effective for larger k since it produces a deter-

ministic prediction (i.e., averages conflicting actions). However, k-NN with k > 1 can be

useful for producing stable predictions over time, since it averages local cases.

Performance numbers for our technique (for both case studies) are given in Table 4.3.

Simplified Rugby denotes this case study and Virtual Rugby the case study described next

(Section 4.5.2). We also performed experiments on the effect of clearing vs. not clearing

the case library between behaviors — this proved to have little effect.

4.5.2 Complex Virtual Rugby Case Study

Our second case study is similar to the first, but is significantly more complex and

involves a human user. In the simplest configuration, there are two players. The human

has the role of ball runner, while the agent is the tackler. However, in our experiments we

varied the roles and number of members of each team, as we describe shortly.

The virtual environment is continuous, both in terms of the state and action space.

The agent and the human’s avatar can be located at any real-valued position on the playing

field, and can be traveling at any velocity in the range [0.0, MaxVelocity] along a real-valued

two-dimensional vector. The agent can change each component of its velocity by values in

the range [−MaxAcceleration, MaxAcceleration] once per time step. The human controls

77

www.manaraa.com

his avatar through a joystick, and has no software enforced acceleration limit. Therefore,

the human has a distinct advantage in terms of maneuverability.

For this environment, the compact state definition used in learning is composed of: (1)

the translation-invariant separation of the agent and human, and (2) the velocity vectors of

the agent and human. Thus the compact state has six real-valued components. The action

is stored as a two-dimensional real-valued acceleration vector.

As in the simplified rugby case study, there is no explicit communication between the

agent and human, and the agent can fully perceive the current state of the virtual environ-

ment within the bounds of sensory honesty. The current state is presented to the human

user in real time through computer graphics, as shown in Figure 4.1. A fixed time step of

15 Hz is used in this case study, which is fast enough to make learning challenging and

forces our learning technique to operate quickly.

We performed several experiments in this case study, varying the number of agents

on each team, the initial state, and the human user’s behavior. We gathered statistics on the

accuracy of the agent’s learning, the increase in its success rate with respect to the human

user (i.e., ratio of tackles to scores), and the runtime performance of our adaptation system.

These results are presented in Figures 4.7 and 4.8, and Table 4.3. Note that in the graphs,

the experiments started with the agent having very incorrect information about the human

user. We purposely did this to demonstrate how quickly our technique learns, especially

when its current knowledge is invalid.

As seen in Figure 4.7, our learning technique reaches high accuracy quickly, and then

continues to learn such that it remains accurate for non-stationary human behavior. Also, as

seen in Figure 4.8, the agent eventually beats the human more than 50% of the time, even

though the human’s acceleration is not bounded but the agent’s is. An interesting result

from our experiments is that our learning technique works well for multi-agent environ-

ments. For example, we performed an experiment where several agents (all on one team)

were supposed to work together to tackle the human user. This experiment was success-

ful, as the agents could predict what their teammates would do and thereby were able to

cooperate effectively (see Figure 4.9).

A frame-by-frame example of our learning technique in action is given in Figure 4.10.

78

www.manaraa.com

Further details and examples are given in a supplementary digital video, available from

http://rivit.cs.byu.edu/a3dg/publications.php.

4.5.3 Capture the Flag

This case study is based on a well-known multi-agent research test bed called Game-

bots [Kaminka et al. 2002]. This test bed modifies the popular computer game Unreal

Tournament 2003, allowing a programmer to replace the built-in agent AI. In Unreal Tour-

nament, the virtual world is a complex 3D environment of rooms, hallways, stairs, etc. It

is populated with two or more players (virtual humans) organized into two teams. Each

player is controlled by a human user or software agent. The players are armed with “tag

guns”; once a player is tagged, he is out for a period of time. The objective is to reach the

other team’s flag.

We have modified the Gamebots test bed so that, rather than overriding the entirety

of an agent’s standard AI, we only override the choice of combat movements (e.g., dodg-

ing and/or moving into an advantageous position to tag an opponent). Goal selection,

environment navigation, etc, are performed in the standard manner by the agent. In our

experiments, there was one human user and multiple software agents (approximately half

of the agents on the human’s team, the others on the opposing team).

Each agent uses action prediction to predict the human’s 2D movement to better coop-

erate with or compete against him. Actions such as aiming the tag gun, firing, and jumping

were not predicted.

Because of the complexity of this environment, it is not plausible to use a complete

state space for action prediction. Thus we use an approximate state space. The state space

is composed of: (1) the translation-invariant separation between the human user and the

opponent closest to him; (2) the 2D velocities of the human and his closest opponent;

and (3) an angle θ representing the average direction toward nearby obstacles. Thus the

compact state definition is: (4x, 4y, VH , VA, θ), where {4x, 4y} is the translation-

invariant separation between the human and his closest opponent, and {VH , VA} are the

2D velocities of the human and closest opponent respectively. All nearby obstacles are

represented by a single mean angle, θ (oriented around the “up” direction), representing

79

www.manaraa.com

the average direction toward the obstacles according to the human’s frame of reference.

Assuming the user’s avatar will never be in a very narrow hallway or room, this angle will

be valid since the avatar will not be surrounded by obstacles in the environment.

The results of this case study are presented in Figure 4.11. Action prediction is of

a lower accuracy than in our rugby case studies, largely because we use such a crude ap-

proximation of the current state. Nevertheless, our results are still promising, suggesting

that our adaptation technique scales sufficiently to be useful for complex environments and

agents. A slide show of this case study is given in Figure 4.12.

4.6 Summary and Discussion

We have presented a novel method that enables autonomous cooperate/competitive

agents to quickly adapt on-line to better interact with a unique human user (or another

synthetic agent). Our technique is very general, simply providing extra information to an

agent, and thus can be used with many existing types of agents. Our system supports both

reactive and deliberative decision making, in discrete or continuous state/action spaces.

Our contribution in this paper is important because we present a solution for a previously

unsolved problem: fast on-line learning for agents interacting with humans. Learning is

an important problem for agents in many interactive software applications, such as training

simulators, computer games, etc. For further examples than those given in this paper, see

the supplementary digital video at http://rivit.cs.byu.edu/a3dg/publications.php.

The reason why our technique is sufficient for on-line agent learning to better interact

with a unique human user is because the agent learns all the non-stationary knowledge

it needs to intelligently select actions. For example, in our rugby case studies, the agent

already has adequate perception, motor control, and decision-making skills. To optimally

choose what actions to perform, it simply needs to know which of its candidate actions is

most valuable for any given situation. By accurately predicting the behavior of the human,

the agent can predict the results of its actions and thereby can rationally select what to

do. Thus our knowledge-gathering approach to interactive on-line learning can be seen as

hitting a “sweet spot” between nature vs. nurture.

80

www.manaraa.com

It is because our technique forgets old cases that it is able to learn non-stationary

behavior. Forgetting also helps keep memory requirements stable. However, forgetting can

cause an agent to make a mistake if the human waits sufficiently long before repeating a

behavior.

An interesting benefit of our technique is that, since an agent can adapt on-line, it can

fill “gaps” in its decision-making skills. In other words, a programmer does not have to

carefully construct the agent such that it will immediately handle every possible situation

properly. This can also make an agent more robust. Further, in environments where there

is no pareto-optimal Nash equilibrium (i.e., no universally best strategy), adaptation may

be necessary to achieve and maintain good behavior.

However, while our technique has been shown empirically to work well, there are

some weaknesses that are important to recognize. First, while knowledge gathering is very

fast, using that knowledge does require a nontrivial amount of CPU time. As a result, it

may not be plausible to have many adapting agents in the same interactive environment.

Second, when generalizing cases, we make assumptions: most notably that the human will

only perform an action he has previously performed in/near the current state. Thus the

agent may ignore worst-case scenarios.

Although our technique has proven effective in our case studies, there is no guarantee

that it will be effective for every imaginable agent and environment. However, as long

as our assumptions in Section 4.4 are met, we believe that our technique will work well

for many categories of agents and environments. In summary, we assume that a compact

state representation and (if minimax is used for generalization) an effective gradient fitness

function have been provided. Recall that organizing the action space such that actions can

be blended is not strictly necessary because case generalization through minimax performs

no blending. An example of an agent for which our technique will perform poorly is a

chess player, because the state space is too large and complex.

Of course, our learning technique is not limited to learning about a human; it can be

used for one synthetic agent to learn about another synthetic agent. The reason we have

focused on agent-human interactions in this paper is because this type of learning is gener-

ally more difficult than in agent-agent interactions. Another possible use of our technique

81

www.manaraa.com

is the creation of entirely new agent decision-making modules in an on-line fashion. We

can use the state-action model of the human’s behavior to perform decision making for an

agent. This is fundamentally similar to behavior capture [van Lent and Laird 2001] and

behavior cloning [Kasper et al. 2001]. One drawback to this proposed use of our method

is that the decision making is somewhat shallow, since it only predicts actions (not task or

goal selection).

For future work, we are interested in developing a more complete on-line agent adap-

tation system. Ever since the pioneering work of Brooks [Brooks 1986], agent AI has often

been implemented in a layered fashion. Our action prediction technique is most pertinent

for low-level decision making (e.g., action selection). However, higher-level decision mak-

ing (e.g., task and goal selection) is also important. We want to develop new learning

techniques for these higher layers. We envision these new learning techniques, along with

our action prediction technique, composing a complete and effective on-line agent adapta-

tion system. Another interesting avenue for future work may be to replace the case-based

reasoning in our action prediction method with a more powerful and modern approach such

as [Wilson and Martinez 2000]. Yet another direction for future work may be to apply our

method for use in adaptive user interfaces [Zhu et al. 2003]. A further direction is to explic-

itly address partial observability of the state when recording state-action pairs of a human’s

behavior.

82

www.manaraa.com

Figure 4.1: A virtual character (skeleton marked with a star) tries to catch the human’s

avatar (other skeleton). By adapting to the human’s tactics, the character can become a

more challenging, personalized opponent.

Figure 4.2: (a) Structure of our learning method. An n-step sequence of states and actions

into the future is predicted, then the agent uses this information to make more optimal

choices. (b) To predict the human’s actions several steps into the future, we predict/compute

the actions of all agents in the environment, determining a new state, and then repeat.

Figure 4.3: (a) To focus on exploitation (i.e., exercise confidence in our acquired knowl-

edge), we use continuous k-nearest neighbor to generalize cases. (b) Since only one action

is predicted for a given state, we predict linearly into the future.

83

www.manaraa.com

Figure 4.4: To focus more on caution than confidence, we use a bounded minimax search.

The k nearest cases are found, and the associated action that minimizes the agent’s fit-

ness function is assumed to be the one the human will select. Since we only expand the

minimum node, this technique predicts linearly like when we use k-NN.

Scoring Zone

O
u
t
o
f
b
o
u
n
d
s

O
u
t
o
f
b
o
u
n
d
s

A

H

Has ball

4

Figure 4.5: Environment used in the simplified rugby case study.

84

www.manaraa.com

fitness tackler(PC, PT)

{
if (PC.y > PT .y)

{
/* Ball carrier has passed tackler, so he can score easily. */

return (−100−‖PC −PT‖);

}
else if (PC == PT)

{
/* Close enough to tackle. */

return (500);

}
else

{
/* Tackler is in front of ball carrier (where it should be). */

return (100−‖PC −PT‖);

}
}

Figure 4.6: Pseudo-code of the ball-carrier fitness function in the simplified rugby case

study. PC is the position of the ball carrier and PT is the position of the tackler agent.

30

40

50

60

70

80

90

100
Complex

Rugby

5 minutes
Time

A
v
g

.
A

c
ti

o
n

 P
re

d
ic

ti
o

n

A
c
c
u

ra
c
y
 (

%
)

Figure 4.7: Accuracy of predicting the human’s actions (L2-norm) in the complex rugby

case study. This experiment started with the agent having very incorrect information about

the human user.

85

www.manaraa.com

20

30

40

50

60

70

80
Complex

Rugby

10 minutes
Time

A
v
g

.
S

u
c
c
e
s
s
 R

a
te

 o
f

A
g

e
n

t
v
s
.
H

u
m

a
n

 (
%

)

Figure 4.8: After a few minutes, the agent is able to outperform a human user in a complex

continuous rugby environment, even though the human has more maneuverability. This

experiment started with the agent having very incorrect information about the human user.

Figure 4.9: Effectiveness of three agents against the human user in the complex rugby

environment. The agents learn to predict the actions of each other as well as a human, and

thereby learn to cooperate effectively in the rugby environment.

Figure 4.10: (a) The human user performs a loop, which succeeds in getting past the tackler

agent (skeleton marked with a star). As a result, the human can score. (b) Now that the

agent has adapted, the next time the human attempts a loop it predicts the human’s actions

and tackles him. Further examples of our technique in action are given in a supplementary

digital video, available from http://rivit.cs.byu.edu/a3dg/publications.php.

86

www.manaraa.com

Figure 4.11: Accuracy of predicting the human’s actions (L2-norm) in the Capture The Flag

case study. This experiment started with the agent having very incorrect information about

the human user.

Figure 4.12: Slide show of our Capture The Flag case study.

87

www.manaraa.com

88

www.manaraa.com

Chapter 5

Fast Multi-Level Adaptation for Interactive Autonomous

Characters

To appear in ACM Transactions on Graphics 2005.

Abstract: Adaptation (on-line learning) by autonomous virtual characters, due to in-

teraction with a human user in a virtual environment, is a difficult and important problem

in computer animation. In this paper we present a novel multi-level technique for fast

character adaptation. We specifically target environments where there is a cooperative or

competitive relationship between the character and the human that interacts with that char-

acter.

In our technique, a distinct learning method is applied to each layer of the character’s

behavioral or cognitive model. This allows us to efficiently leverage the character’s obser-

vations and experiences in each layer. This also provides a convenient temporal distinction

between what observations and experiences provide pertinent lessons for each layer. Thus

the character can quickly and robustly learn how to better interact with any given unique

human user, relying only on observations and natural performance feedback from the envi-

ronment (no explicit feedback from the human). Our technique is designed to be general,

and can be easily integrated into most existing behavioral animation systems. It is also fast

and memory efficient.

Keywords: Computer animation, character animation, behavioral modeling, AI-based

animation, machine learning.

89

www.manaraa.com

Figure 5.1: A virtual character (red skeleton) tries to catch the human’s avatar (brown

skeleton) in a rugby simulation. By adapting to the human’s tactics, the character can

become a more challenging, personalized opponent.

5.1 Introduction

Behavioral animation has become popular for creating autonomous self-animating

characters. However, an important limitation of traditional behavioral animation systems

(with respect to interactive environments) is that they are largely static. In other words, the

character’s behavior does not adapt on-line due to interaction with a human user and/or its

environment. This may not only lead to a lack of variety and non-stimulating animation,

but also makes it easy for a human user to predict a character’s actions.

Intelligent, rapid on-line adaptation of a character’s behavior would be extremely use-

ful for many computer graphics applications. For example, consider a training simulator

where a virtual character is an opponent to a human user (see Figure 5.1). By learning on-

line through interaction with the human, the character could adjust its tactics according to

those of the human it is competing against and thereby become a more difficult, customized

opponent.

In this paper, we present a novel multi-level technique for fast character adaptation.

Our technique is grounded in traditional machine learning and is further inspired by insights

into how humans learn. We focus our discussion on environments where the character

90

www.manaraa.com

has a cooperative or competitive relationship with the human user. Note that our learning

technique is applicable to both behavioral (reactive) and cognitive (deliberative) models of

decision making for autonomous virtual characters. Also, our technique is designed to be

general, and can be easily integrated into most existing behavioral animation systems.

Our adaptation technique contains a small set of distinct learning methods. A distinct

learning method is applied to each layer of the character’s behavioral (and/or cognitive)

model. This allows us to efficiently leverage the character’s observations and experiences

in each layer. Thus the character can quickly and robustly learn how to better interact

with any given unique human user, relying only on observations and natural performance

feedback from the environment (no explicit feedback from the human).

Each learning method contained in our technique is specially designed with regards

to the temporal constraints and degree of abstraction of the decision-making layer to which

it is applied. For adaptation in low-level decision making (action selection), we take an

observation-based approach that operates through case-based reasoning. Specifically, state-

action pairs of the human’s observed behavior are recorded. These cases are then used to

predict the human’s future behavior. Through these predictions, a character can extrapolate

the long-term utility of any activity it may engage in, and thereby can intelligently select

its actions.

For adaptation in mid-level decision making (task selection), we take a combina-

tion experience- and planning-based approach. First, the character approximately learns

in which regions of the state space each of its possible tasks are likely to help achieve its

goals. Then, to select a task for the character’s current state, the most promising tasks are

found and further scrutinized by running internal simulations to more accurately measure

their utility. To ensure that the simulations will be adequately accurate, we use the model

of the human user’s decision making constructed during low-level adaptation as described

above.

Finally, for high-level decision making (goal selection), we monitor changes in the

character’s emotional state to adapt its personality. Specifically, the character learns in

which situations selecting a given goal leads to increased happiness. This can be combined

91

www.manaraa.com

with existing interactive character training techniques so that a human user can explicitly

adjust the character’s personality.

In addition to these learning methods, we also provide the character with the ability

to mimic novel, valuable behaviors that it observes the human user’s avatar perform. Mim-

icking is executed in two steps. First, when the character determines that the human has

achieved her goal, the human’s behavior is tested to see if it is novel to the character; if

it is novel, the corresponding state-action sequence is recorded. Second, the character can

explicitly mimic this behavior when appropriate and desired.

Our multi-level adaptation technique allows an intelligent, complex character to adapt

in the following ways:

• Learn to accurately predict the human’s actions.

• Learn the best behavior for any given situation.

• Mimic the effective behaviors of the human.

• Learn through emotional feedback to maximize happiness.

We begin by surveying related work. We then give a brief introduction to the theo-

retical background of our technique, both in terms of behavioral animation and machine

learning. Next we turn to a discussion of the key challenges in successfully performing fast

and robust adaptation, providing a roadmap of what our technique must accomplish. We

then present our technique for rapid adaptation of virtual characters. Finally, we conclude

with our experience from three case studies. We use our first case study (a virtual sport like

rugby or American football) for examples throughout this paper. Our rugby case study is

a challenging environment for character adaptation, because it is very fast-paced, involves

synthetic humans, and the state/action spaces are continuous.

5.2 Related Work

Our multi-level approach to adaptation is inspired by [Stone 2000], where agents

(characters) in a multi-agent environment learn off-line in a layered fashion to perform their

92

www.manaraa.com

tasks and thereby learn better than with a direct, non-layered approach. What is new in our

work is that we apply this layered-learning concept to achieve faster learning so that our

characters can adapt on-line within the tolerances of human time and patience. Also, the

per-layer learning methods used in [Stone 2000] are standard machine learning techniques,

whereas we have developed custom learning methods to fulfill our unique needs.

In some aspects, our custom per-layer learning methods resemble existing machine

learning approaches. Our low-level learning method most closely resembles agent model-

ing or user modeling [Gmytrasiewicz and Durfee 2000; Kerkez and Cox 2003; Zhu et al.

2003]. The notable differences from these existing techniques include that our method

operates in continuous state/action spaces, can predict the human user’s behavior several

steps into the future, and can exercise caution or confidence when predicting actions. Our

mid-level adaptation method is most closely related to deliberation-based approaches to

learning [Yoon 2003], but leverages reinforcement learning [Kaelbling et al. 1996; Sutton

and Barto 1998] concepts to expedite the deliberation process. Our high-level adaptation

method is very similar to previous work in computer animation for allowing a user to inter-

actively train a virtual character [Blumberg et al. 2002; Evans 2002], as well as methods for

learning from change in emotional state [Tomlinson and Blumberg 2002; Gadanho 2003].

Our mimicking technique most resembles previous work in learning from observation or

programming by demonstration [Price 2002; Kasper et al. 2001; van Lent and Laird 2001],

but our approach is either significantly faster, more general, or more automatic than previ-

ous techniques.

As pointed out above, while our per-layer learning methods bear similarities to exist-

ing techniques in machine learning, several aspects of our learning methods are novel. We

more thoroughly discuss these novel aspects later in this paper after presenting each of our

learning methods.

Our approach is also inspired by a study of how humans learn [Minsky 1985; Meltzoff

and Moore 1992; Schyns et al. 1998]. Humans learn through a variety of stimuli, both

observed and experienced, and apply lessons learned in many distinct ways. Therefore, it is

sensible that a robust character adaptation technique must also be multi-faceted, leveraging

93

www.manaraa.com

pertinent experience in several distinct ways. The optimal use of one experience to learn

several lessons also makes learning faster.

A number of noteworthy architectures for behavioral animation of autonomous char-

acters have been proposed [Reynolds 1987; Tu and Terzopoulos 1994; Blumberg and Galyean

1995; Perlin and Goldberg 1996; Funge et al. 1999; Faloutsos et al. 2001; Isla et al. 2001;

Monzani et al. 2001]. While producing impressive results, most of these systems have not

incorporated any form of learning and therefore cannot adapt to more skillfully interact

with any given human user.

Off-line behavioral learning has recently seen some attention, e.g., in our own work

[Dinerstein et al. 2004b; Dinerstein and Egbert 2004]. However, off-line learning does not

address the problem of interest in this paper: interaction-based adaptation.

The multi-level adaptation approach we propose in this paper has strong underpin-

nings in the Belief-Desire-Intention (BDI) agent model [Rao and Georgeff 1995]. In BDI,

the agent’s internal state is composed of beliefs (i.e., knowledge), desires (i.e., goals), and

intentions (i.e., plans). The agent uses this internal state to select actions. Our approach is

similar in that we collect knowledge through interaction, which the character leverages to

more effectively make decisions and thereby fulfill its goals. However, our approach varies

from traditional BDI because we acquire and utilize knowledge in a layered fashion.

A notable work performed in virtual character adaptation through prediction is [Laird

2001]. In this technique, the character memorizes facts about the layout of the environment

and then uses this information to weakly predict the human’s future behavior (assuming the

human will behave exactly like the character would in the same situation). This prediction

is then used to improve the virtual character’s decision making. This interesting technique

is one of the first working examples of useful adaptation in practice. However, the character

only learns about the layout of the environment, not the human’s behavior, so the character’s

ability to adapt is distinctly limited.

On-line, interaction-based behavioral learning has only begun to be explored [Evans

2002; Tomlinson and Blumberg 2002]. A notable example is [Blumberg et al. 2002], where

a virtual dog can be interactively taught by the human to exhibit desired behavior. This

technique is based on reinforcement learning with immediate explicit feedback from the

94

www.manaraa.com

human user, and has been shown to work extremely well. However, it has no support for

long-term reasoning to accomplish complex tasks (i.e., it is reactionary). Also, the approach

is based on continual and explicit feedback from the character’s “master”. Therefore these

techniques, while interesting and useful, are best suited for a “master-slave” relationship

between a character and a human user, not a competitive or cooperative relationship. It

may be possible to alter [Blumberg et al. 2002] such that the underlying learning algorithm

utilizes feedback from a synthetic trainer rather than a human, but it is not clear at this time

how this could be done.

There is need for a technique that allows autonomous virtual characters with complex

behavioral and/or cognitive models (in a competitive or cooperative relationship with the

human) to rapidly adapt on-line to better fulfill their goals in an interactive environment.

This adaptation should be effective, believable, fast enough to not tax human patience, and

appear similar to the way a real human peer or competitor would learn through interaction.

Our contribution is a technique that fulfills these needs.

5.3 Background

5.3.1 A Common Behavioral Animation Framework

For our on-line character adaptation technique to be broadly useful, it must be appli-

cable in most, if not all existing behavioral animation systems. As discussed in [Millar

et al. 1999], behavioral animation systems can be cast into a common framework. While

the details of these systems can vary significantly, they are nevertheless quite similar from

a framework-level perspective. We develop our technique within this common framework

so that it can be usable in current and future behavioral animation systems.

A simplified common behavioral animation framework (as seen from a high level) is

shown in Figure 5.2. Behavioral animation systems in general have three primary modules:

perception, behavior, and motor control. We are most interested in the behavior module, as

this is where decision making takes place and therefore is key to adaptation. This module

is often called the behavioral model. Further details of this module are shown in Figure

95

www.manaraa.com

Figure 5.2: (a) A simplified common behavioral animation framework. s is the current

perceived state, and a is the action selected to be performed. (b) Most behavioral models

are layered to break up the decision-making process into tractable pieces.

5.2b. The decision-making process is usually split into layers, decomposing it into man-

ageable pieces. This layered approach to decision-making has been standard for control of

autonomous agents since the pioneering work of Brooks [Brooks 1986]. The upper layers

perform higher-level, coarse-grain decision making, while the lower layers perform lower-

level, fine-grain decision making. This provides a natural and powerful breakup of the

decision-making process.

It is most common, both in behavioral animation and overlapping fields, for there to

be three layers in the behavioral model. However, there are no universal names for these

layers. Throughout this paper, we refer to these as action selection, task selection, and goal

selection (in order of fine to coarse temporal granularity).

Our character adaptation technique integrates with a behavioral animation system

through the layers of the behavioral model. A distinct learning method is applied to each

layer. This allows us to efficiently leverage the character’s observations and experiences

for each layer, based on that layer’s unique degree of abstraction and temporal constraints.

However, note that while our technique is specially designed for three-layer behavioral

models, it can be used effectively with models of any number of layers.

There are two types of decision-making models that are popular for use in behavioral

animation. The traditional behavioral model [Reynolds 1987] performs reactive decision

making. Cognitive modeling [Funge et al. 1999] was introduced to provide virtual char-

acters with deliberative decision making. Our adaptation technique works well for either

approach. However, for simplicity, and without loss of generality, we will use the term

“behavioral models” to represent both behavioral and cognitive models.

96

www.manaraa.com

5.3.2 Machine Learning

Our multi-level character adaptation technique is composed of four custom learning

methods. These methods are grounded in traditional machine learning approaches, but are

novel in several aspects. We now briefly review pertinent issues in machine learning, and

give some motivation for our need to develop custom learning methods to achieve practical

on-line character adaptation.

Formally, machine learning is the process of a computer program learning an un-

known mapping, often formulated as f : R
n → R. There are numerous machine learning

techniques presented in the literature [Mitchell 1997]. Each approach has its own strengths

and weaknesses, and each is a good fit for some category of applications. Nevertheless,

there is no machine learning technique that works well for all applications (thus the exis-

tence of so many alternative approaches).

In general, there are four main categories of machine learning techniques:

1. Example-based learning

2. Experience-based learning

3. Planning-based learning

4. Observation-based learning

Most existing machine learning techniques are example-based. They learn using a

large set of explicit input-output examples provided by the user. These techniques include

artificial neural networks, decision trees, etc [Mitchell 1997]. Many of these techniques

learn very slowly and/or require a large number of input-output examples, and therefore

are not appropriate for interactive, on-line learning. Another challenge is that it may be in-

appropriate or prohibitively difficult for an end user to provide the necessary input-output

examples. Thus these techniques (in their traditional form) are not applicable for our prob-

lem of interest.

Reinforcement learning [Kaelbling et al. 1996; Sutton and Barto 1998] is an effective

approach to experience-based learning. In reinforcement learning, the world in which the

97

www.manaraa.com

agent lives is assumed to be in one of a set of perceivable states. The objective is to learn

the long-term value (i.e., fitness) of each state-action pair. The main approach taken is

to probabilistically explore states, actions, and their outcomes to learn how to act in any

given situation. Unfortunately, while this approach learns well, it does not learn fast. For

example, the system TD-Gammon [Tesauro 1995] taught itself to play Backgammon at

a master’s level. However, to learn this, it had to play two million games against itself!

While it is practical for a software program to play against itself this many times off-line, it

is impractical to expect a human to spend so much time interacting with it. Indeed, human

patience is the most critically scarce resource in interaction-based adaptation. There are

further challenges in using traditional reinforcement learning for interactive adaptation,

such as requiring discrete state and action spaces, etc.

Thus far we have discussed example- and experience-based machine learning, the

most common approaches. There are other machine learning approaches, e.g., planning-

and observation-based, which could be considered for use in character adaptation. For ex-

ample, planning through a tree search [Sutton and Barto 1998] to compute the long-term

value of each state-action directly, rather than waiting for the value to backup using local

updates. This places the burden of learning more on processing power than continually

repeating experiences, so learning can occur far more quickly with respect to human in-

teraction. However, planning requires a complete model of the character’s environment,

including all agents therein—but we do not have a model of the human user’s behavior.

Observation-based learning appears especially applicable to our needs in interactive

character adaptation. These techniques include agent/user modeling [Gmytrasiewicz and

Durfee 2000; Kerkez and Cox 2003] and imitation [Price 2002]. In agent/user modeling,

the agent learns to predict the actions of someone else and can thereby predict the utility of

any behavior it may engage in. In imitation, the agent memorizes the behavior of another

agent or user and mimics it. These observation-based approaches to machine learning

are interesting because they are natural for on-line use. However, existing techniques are

limited to discrete state/action spaces, or do not learn quickly from few observations, etc.

98

www.manaraa.com

Therefore, while current approaches in machine learning provide us with a solid the-

oretical foundation to build on, existing techniques do not solve our problem of interactive

adaptation for virtual characters.

5.4 Making Adaptation Practical

5.4.1 Requirements

While machine learning provides a theoretically sound basis for building systems that

learn, there are a number of issues that make existing techniques problematic in the con-

text of interactive adaptation for autonomous animated characters. We have identified the

following characteristics that are necessary for an adaptation algorithm (for cooperative or

competitive autonomous characters) to be practical and useful, listed in order of impor-

tance:

1. Fast learning. Human time and patience is the resource we will certainly have

the least of. Further, slow learning will not make a character keep up with a fast-learning

human. Therefore, adaptation must occur quickly based on few experiences.

2. No explicit human feedback. To achieve adaptation for truly autonomous coop-

erative or competitive relationships, we cannot ask the human to supply detailed feedback

on the character’s every action (this denotes a master-slave relationship, and could interrupt

the flow of an animation). Therefore, the adaptation must occur without any explicit human

feedback, just natural feedback from the environment.

3. Believable adaptation. To be convincing, adaptation must appear intelligent. That

is, when the character learns, it should usually (or always) become better at its task.

4. Must perform at interactive rates on a PC. For adaptation to be as widely useful

as possible, it must be practical for interactive use on current PC CPUs.

99

www.manaraa.com

5.4.2 Assumptions

In order to achieve the above listed goals, we make the following assumptions. These

assumptions, however, are valid within our theoretical foundation and do not impose any

important limitations:

1. Knowledge acquisition is sufficient for adaptation. We assume that our character

already possesses adequate motor control, perception, and decision-making skills. There-

fore, to optimally interact with a unique human user, all that it needs to do is gather some

key knowledge with which to guide its decision making.

2. Natural-looking learning is sufficient. Our adaptation technique does not need to

be as powerful as traditional reinforcement learning. We know from ethology that Nature

places a premium on learning adequate solutions quickly.

3. Insight is used to accelerate adaptation. It is well known that insight by the

programmer into what the character must learn can greatly simplify the learning process.

We assume that the programmer provides such domain knowledge in the form of a good

compact state definition, and a gradient fitness function [Kaelbling et al. 1996] (i.e., reward

is given for approaching goal states).

4. The current state and the user’s action are observable. All of our learning

methods utilize the current state of the environment, and some utilize the human user’s

actions. Thus the current state and user’s actions must be observable. This assumption

is reasonable in our problem domain because the low-level actions of the human user are

explicitly input through a device such as a joystick. Also, the virtual environment exists

in its entirety in software and therefore is perfectly observable (with the exception of the

user’s internal state, which we infer as discussed later in the paper).

5.5 System Description

We now give a detailed description of our multi-level technique for fast character

adaptation. First, note that we start with a non-user-specific behavioral model that is con-

structed off-line. This model provides the baseline behavior for the character. It is this

100

www.manaraa.com

Figure 5.3: Relationship between goals, tasks, and actions. These are the names we apply

to these temporal levels of decision making.

model that we adapt on-line so that the character will better interact with a unique human

user.

In our technique, we fulfill the requirements listed in Section 5.4.1 by using a combi-

nation observation-, experience-, and planning-based approach to machine learning. More-

over, each layer of the behavioral model is treated differently; the specific approach to

learning used in each layer is unique to the needs and temporal constraints of that layer. In

fact, it is the temporal granularity of decision making in each layer that primarily dictates

what approach to learning will be most effective. We will discuss this in more detail later.

There are no universal names for the decision-making layers of behavioral models.

For clarity, we use the following names (see Figure 5.2): action selection, task selection,

and goal selection (in order of fine to coarse temporal granularity). This relationship is

demonstrated in Figure 5.3. An action is a very low-level decision, which can be directly

translated into motor control. A task is somewhat more high level, requiring several actions

to perform. A goal is the highest level, representing the character’s strongest current desire,

and can be broken up into several tasks. The current goal loosely determines the tasks to

perform, etc.

An overview of our adaptation system is given in Figure 5.4. As mentioned previously,

it is composed of a set of discrete learning methods which are applied to individual layers

in an existing behavioral (reactive) or cognitive (deliberative) model. Note that if a given

model has fewer than three layers, an appropriate subset of our learning methods can be

used.

101

www.manaraa.com

Figure 5.4: Overview of our adaptation system. Individual learning methods are applied to

the layers of a behavioral model.

5.5.1 State and Action Representations

For any given character and virtual environment, our state space may have to be con-

tinuous. This is because it is possible that a small difference in state can determine a large

difference in behavior. A continuous state space can also help in achieving smooth and

aesthetically pleasing character animation. Therefore, our technique uses a continuous in-

ternal representation of states and actions. Since this is more general than a discrete space,

both representations are naturally supported.

We represent the state space as a real-valued, n-dimensional feature vector. Thus a

state s ∈ R
n is a point within this feature space.

A feature is some salient aspect that characterizes the state of the world. Usually,

even complex worlds can be effectively represented with a compact set of features. In

fact, there are known techniques to automatically discover salient features, e.g., principal

component analysis [Mitchell 1997]. Alternatively, human intuition can be applied to this

problem. As was stated in Section 5.4.2, we assume that the programmer has provided a

good, compact state representation for the given character/world. This is important because

a compact state space will help the character adapt quickly and better generalize what it has

learned. For more information on selecting a compact set of features, see [Reynolds 1987]

or [Grzeszczuk et al. 1998]. As an example, in our 1-on-1 rugby case study, the state is

composed of the translation-invariant separation of the two characters, and their velocities.

Like states, actions are real-valued vectors, a ∈ R
m, so that both discrete and con-

tinuous action spaces are supported. Actions should be organized in such a way that they

can be combined into some sort of “intermediate” action (e.g., ‘left’ and ‘forward’ become

‘diagonal’).

102

www.manaraa.com

It is important, for the sake of generalization, that our real-vector-valued states and

actions be organized such that similar states usually map to similar actions. More formally:

(‖s1,s2‖ < εa) ⇒ (‖a1,a2‖ < εb),

where ‖ · ‖ is the L2-norm, and εa and εb are small scalar thresholds. Certainly, this

constraint need not always hold, but the smoother the relationship the simpler it will be

to learn.

If our adaptation technique is to be integrated into an existing behavioral animation

system, it may be necessary to transform states and actions into our internal real-vector-

valued representation. This can be performed through a simple, custom transformation:

Ts : state→ s ∈ R
n, Ta : action→ a ∈ R

m, T−1
a : a → action

where teletype signifies the external format of states and actions.

While we assume in this paper that the programmer has provided an effective and

compact state space, there are several techniques available for automatic state space dis-

covery (e.g., [Blumberg et al. 2002; Guyon and Elisseeff 2003]). Our motivation for using

explicitly designed state spaces is that they have often proven superior in machine learning

experiments reported in the literature. Nevertheless, better results may be achieved through

automatic techniques when the programmer is inexperienced with designing compact state

spaces.

5.5.2 Low-Level Learning (for Action Selection)

The primary challenge faced in performing low-level adaptation (i.e., learning in the

action selection layer) is that, with the decision making being so temporally fine-grain, it is

impossible to quickly learn long-term values of state-action pairs. However, due to this fine

temporal granularity, it is easy to observe the human’s behavior in the form of state-action

pairs. This is possible because the human’s actions are explicitely input using a device such

as a joystick, and the state is entirely observable because the virtual world exists in software

(with the exception of the human’s internal state which we infer as discussed below).

103

www.manaraa.com

Therefore, we take an observation-based approach to adaptation for action selection.

Specifically, through observation, we can construct a Markovian model of the human’s

behavior. We can then use this model to predict the human’s future behavior, and thereby

our character can more wisely select actions to perform (see Figure 5.5).

In our action selection adaptation method, the behavior of the human user is recorded

on-line in the form of state-action pairs. That is, at each time step, the current state and the

action selected by the human are saved. For simplicity, we use a small constant time step

for sampling the human’s state-action pairs. For example, in our rugby case study, the time

step matches the frame rate of the animation (15 Hz).

The model of the human’s behavior is constructed through case-based learning. Each

recorded state-action pair is treated as a case in a case-based reasoning engine. A library is

maintained of useful cases. Since the state space is continuous, the library is organized as

a hierarchal partitioning of the state space. Partitioning is important so that fast lookup of

cases can be performed. Automatic partitioning techniques (e.g., a kd-tree) can be used to

great effect. Alternatively, partitioning can be performed by the programmer so that human

insight may be applied.

To predict the human’s future behavior, the library of cases must be generalized so

that, for any given query state, an associated action is computed. To fully exploit our

knowledge of the human, we generalize through the continuous k-nearest neighbor algo-

rithm. That is, the k cases closest to the query state (according to the Euclidean metric) are

found and a distance-weighted normalized sum of the associated actions is computed:

˜a =
∑k

i=1 (wi ·ai)

∑k
i=1 wi

, where wi =
1

di
2
.

The tilde notation signifies that the answer is approximate. We have found 1 ≤ k ≤ 3 is

effective. k = 1 is good for exactness, as no blending of actions occurs. However, k = 3 is

good if there is no closely matching case, and/or for attaining a more general impression

of the human’s behavior. Note that it is helpful to normalize the axes of the state space, so

that they will contribute equivalently in computing distance.

Alternatively, to focus on caution rather than exploitation, we generalize using a cus-

tom modified minimax search. The k cases closest to the query state are found. Then,

104

www.manaraa.com

Figure 5.5: (a) Structure of our low-level adaptation method. An n-step sequence of states

and actions into the future is predicted, then action selection uses this information to

make wiser choices. (b) To predict the human’s actions n steps into the future, we pre-

dict/compute the actions of all agents in the environment, determining a new state, and

then repeat. The tilde notation signifies that the predictions are approximate.

the k actions associated with the retrieved cases are tested with the character’s own fitness

function. Finally, the action that results in the minimum fitness is assumed to be the one

the human will select. More formally:

˜a = arg min
ai ∈ k cases

(fitness(s,ai)).

For this cautious generalization, we prefer 3 ≤ k ≤ 16. The greater the value of k, the more

cautious the generalization will be.

It is important that we predict the human’s actions several steps into the future, so

that our character can make wise decisions. To do this, we first predict the human’s action

for the current time step, then we either compute, predict, or assume the actions of all

other agents in the virtual world. This allows us to predict the future state, which in turn

allows us to predict the next action taken by the human, and so forth. We have found that

predicting between 5 to 15 steps into the future works well, is accurate enough to be useful,

and usually requires little CPU time.

The case library is originally populated with state-action examples of “generic” hu-

man behavior. These are gradually replaced with user-specific examples, as they are ob-

served by the character. In particular, a limited number of cases (s,a)i are allowed for each

region r j of the state space. Cases are selected for replacement based on their age and

unimportance. In other words, if a case was recorded long ago, and/or is very similar to the

new case to be added, it is likely to be removed. Thus the character has the ability to “for-

get”, which is very important in learning something as non-stationary as human behavior.

105

www.manaraa.com

We formally define the case replacement as:

replace arg min
(s,a)i∈r j

(M(s,a)i) with the currently observed case (st ,at),

using a metric M:

M((s,a)i) = −α ·age+β · ‖(s,a)i,(st ,at)‖.

Human decision-making and behavior is non-deterministic. Therefore, it is critical

that our action prediction technique properly handle non-determinism. Because we ex-

plicitly store discrete state-action cases, non-determinism can be represented in our case

library. Both of our approaches to case generalization properly handle non-determinism,

but in different ways. k-nearest neighbor is less tolerant of non-determinism than minimax,

since conflicting cases can average out to be a null action. However, in situations of greater

case homogeneity, k-nearest neighbor produces accurate predictions of average behavior.

In contrast, our custom minimax always properly handles non-determinism, since it merely

searches for the action that will most damage the character’s fitness.

The reason our observation-based approach to low-level adaptation is sufficient is be-

cause the character learns all the non-stationary knowledge it needs to wisely select actions.

By accurately predicting the human’s behavior, the character can predict the results (i.e.,

utility) of its actions and can thereby wisely select what to do.

An alternative way to use action prediction (rather than predicting an entire sequence

of actions given an initial state, as in Figure 5.5) is for the behavioral/cognitive model

to request individual predictions for specific states. This can be especially useful for a

cognitive model, as it can request information specific to any state it encounters while

deliberating. However, this requires more CPU than a single linear prediction.

Of course, the human user’s decision making will vary based on her current goal. As a

result, it can be useful to employ multiple state-action case libraries, one for each goal. As

discussed in works such as [Blumberg et al. 2002; Evans 2002], the human’s goal can be

easily inferred because the virtual environment constrains what she needs to accomplish.

106

www.manaraa.com

Relationship To Previous Work

Our action prediction method is related to other agent/user modeling techniques, such

as Case-Based Plan Recognition (CBPR) [Kerkez and Cox 2003]. CBPR fundamentally

operates like our method, using state-action cases. However, CBPR is limited to discrete

state/action spaces, does not fully generalize cases, and can only predict an agent’s behavior

one action into the future. Moreover, CBPR always assumes the closest case in the state

space is correct, whereas our technique can exercise caution or confidence when predicting

actions. In fact, our technique can even predict the Nash equilibrium strategy if the proper

information is available in the local cases. Another related technique is Maximum Expected

Utility (MEU) [Sen and Arora 1997], which is a modification of minimax. However, MEU

is limited to discrete state/action spaces, and can require significant CPU (exponentially

increasing) to predict behavior several steps into the future.

In [Gmytrasiewicz and Durfee 2000], a hierarchical approach to agent modeling is

used to produce coordination between software agents. This technique assumes that all

agents desire to cooperate and that payoff matrices are sufficient to model behavior. Thus

this technique is limited to producing only cooperative behavior, and is limited to discrete

state/action spaces. Moreover, this technique is likely not plausible for interactive use,

because it creates a tree-like nesting of models, which can require significant storage and

processing power. Our action prediction method contrasts with hierarchical techniques like

[Gmytrasiewicz and Durfee 2000] because we use a single “flat” model, which is updated to

represent recently observed behavior and forget older behavior. Our method has theoretical

underpinnings in Fictitious Play theory [Stone and Veloso 1997].

Another related technique is [Zhu et al. 2003], an example of user modeling. In

this technique, the system learns to predict the activities of a user interacting with a web

browser. Like this technique, most other user modeling techniques are focused on interac-

tion through GUI interfaces. The fundamental assumption is that the agent-user interaction

takes place through a constrained interface. Thus they are not appropriate for our problem

domain of graphical characters interacting directly with a human user in a virtual world.

We believe that our action prediction method may be very applicable to problems

outside of interactive virtual character adaptation, since it has unique strengths as compared

107

www.manaraa.com

to existing techniques. However, an examination of these uses is outside the scope of this

paper and therefore left to future work.

5.5.3 Mid-Level Learning (for Task Selection)

The challenges faced in performing mid-level adaptation are different than those in

low-level adaptation. This is primarily due to the fact that the temporal granularity of

decision making is now more coarse. Specifically, action selection is performed quite often

(about once every 15 to 1 Hz), while task selection is more seldom (about once every 1 to

30 seconds).

The primary challenge faced in mid-level learning is that we cannot with certainty

observe the human’s behavior in the form of state-task pairs. This is because task selec-

tion is at a conceptually high enough level that it is likely to involve a large amount of

hidden state information inside the human’s brain (i.e., it is non-Markovian). As a result,

it is impossible to determine exactly what motivated the human to select tasks as she did.

Therefore, we cannot take a direct observation-based approach here like we did for action

selection (low-level learning). Moreover, we also cannot easily take an experience-based

approach for task selection, as this can take a long time to learn.

Our approach to mid-level adaptation is primarily planning-based, but also involves

experience- and observation-based reinforcement learning. The key is to be able to run

simulations (i.e., plan) to determine which candidate task will most likely perform best

for the current state. As mentioned in our review of machine learning, we can simulate

the outcome of any decision if and only if we have a complete model of the environment,

including a model of the human’s behavior. Luckily, through our approach to adaptation

we already have a model of the human’s low-level behavior, constructed during low-level

adaptation. We reuse this model here, to run simulations.

Our mid-level adaptation technique involves the following steps, as shown in Fig-

ure 5.6:

1. Estimate value. Compile a small set of candidate tasks that have the highest esti-

mated values (utilities) for the current state.

108

www.manaraa.com

2. Simulate. Run internal simulations for each of the candidate tasks, to more accu-

rately measure their utility.

3. Select. Rank candidate tasks according to their utility. Once this is done, the behav-

ioral model then selects one.

The reason we use step #1 rather than proceeding straight to step #2 is because simu-

lating all possible tasks may be implausible. Therefore, to limit the set of candidate tasks

to a practical number, we need rough approximations of each task’s value so that poor can-

didates can be eliminated early. To do this, we use case-based libraries of state-task values,

one library for each task. These libraries perform a state → value mapping, i.e., deter-

mining for any given state the utility of selecting a given task. The libraries are structured

and evaluated similar to those in low-level adaptation, using k-nearest neighbor. However,

the case population of the state-task libraries is much more sparse (maximizing learning

speed) because we only need rough approximations; we will run simulations to provide

more accuracy as needed. The state space can be uniquely defined and/or partitioned for

each state-task library, if desired. Also, the libraries are originally initialized with regards

to generic human behavior.

Credit assignment is performed to update the state-task values both after running sim-

ulations (according to their predicted utility) and after selecting a task (according to feed-

back from the environment). Updating after a simulation is simple, as we know exactly

what state-task value should be updated. However, updating due to feedback is more dif-

ficult, as feedback is usually delayed. We could use a traditional local update rule from

reinforcement learning, but this is too slow. Instead, as shown in Figure 5.7, we maintain a

chain of the previous n state-tasks visited by the character. The value of every state-task in

the chain is updated every time new feedback is received. The longer the chain, the more

accurate to long-term utility the state-task values will be. The actual update of the case-

based library of values is performed by updating the existing cases closest to the actual case

we wish to update; no new cases are added nor are any removed. More formally:

value(s j, task)′ = value(s j, task)+α ·(˜value−value(s j, task)), ∀ (s j, task)∈ k neighbors,

109

www.manaraa.com

Figure 5.6: Structure of our mid-level learning method. The values of all tasks are estimated

for the current state, then promising tasks are evaluated more accurately through simulation.

Figure 5.7: To know which state-task values to update, we store the path traversed by the

character. Then, after receiving feedback, we update the k cases closest to each state-task

visited.

where α ≈ 0.5 is the scalar learning rate, and ˜value is the apparent state-task utility. The

maximum aggregate change of a case is bounded for each time it is visited (e.g., 40% of its

possible range).

The internal simulations are run for a reasonable amount of time into the future. We

have found that a few seconds in the character’s time frame usually works well. During

the simulations, the human’s actions are predicted using the case-based model constructed

during low-level learning. If there are other computer-controlled characters besides the

one currently performing task selection, their actions can either be computed, predicted, or

assumed. Surprisingly, we have found that it usually is sufficient to assume constant action

(e.g., the character’s last performed action). It can also work well to compute only one new

action for every several time steps. Such assumptions can help speed up the simulation for

more computationally complex behavioral or cognitive models.

The apparent utility of the simulated and/or executed task is computed as the average

of all feedback received during the simulation or execution:

˜value =
t0+n

∑
t=t0+1

fitness(˜st),

110

www.manaraa.com

where t0 is the current time step, and n is the number of steps to simulate into the future. No

emphasis is given to early or latter time steps. As mentioned in Section 5.4.2, a gradient

fitness function is used, meaning that feedback should be received for most/all states visited.

While strong feedback is given for reaching a goal or terminating state, weak feedback is

given for intermediate states. This gradient fitness function, if designed properly by the

programmer, can help lead even short simulations to optimal long-term utility.

Our mid-level learning technique can take time to compute, especially if the charac-

ter’s behavioral/cognitive model is computationally complex. When necessary to maintain

interactive performance, it is possible to simply select a task using the case-based state-task

values. Note that task selection does not need to be performed between animation frames—

the simulation process can be spread out over several frames, as long as the current state

does not vary too greatly.

Relationship To Previous Work

Our case-based approach to learning state-task values has a solid foundation, as local

function approximation is currently considered to be the best approach for learning value

functions [Sutton and Barto 1998]. The aspect of our task-selection adaptation method that

is most novel is the combination of experience- and simulation-based machine learning

concepts. In fact, we are not aware of any existing techniques that use a similar method.

By taking a combination approach, we are able to achieve sufficiently accurate results with

reasonable CPU use and storage requirements (see the results section). In comparison,

traditional reinforcement learning forces an agent to experience all state-task pairs multiple

times to learn their values.

Another interesting aspect of our approach is that it is a practical realization of us-

ing deliberation to generalize sparse learning, a relatively unexplored direction in machine

learning that has recently seen a great deal of interest [Yoon 2003]. In fact, it is currently

hypothesized by many cognitive scientists and engineers that deliberation is a necessary

ingredient to achieve human-like learning (see the proceedings of DARPA 2003 Cognitive

Systems Conference for more information on this topic).

111

www.manaraa.com

5.5.4 Mimicking (for Action and Task Selection)

In our system, mimicking (i.e., imitation) is another learning method for low- and mid-

level decision making. It compliments the learning methods already presented by gathering

knowledge in a different fashion. While less general than our other learning methods, it is

very fast and can easily encapsulate very complex behaviors and decision-making.

Mimicking provides the character with the ability to quickly learn novel behaviors in

a clever and natural, yet indirect way. Moreover, creating truly novel behaviors is difficult,

whereas mimicking is far simpler to perform and is highly likely to improve the perfor-

mance of a character. Another interesting aspect of mimicking with regards to interactive

virtual environments is that it leverages human intelligence in a non-intrusive, intuitive

way. While the human user interacts with a challenging, adapting environment, she will be

forced to adjust her behavior and tactics. Thus she will attempt possibly novel behaviors.

The character can observe these new behaviors and, based on their apparent success, decide

to remember them for later imitation when faced with the same situation as the human was.

Our mimicking technique is summarized in Figures 5.8 and 5.9. In our system, our

mimicking method affects both the task and action selection layers. This is because the

observed novel behavior, which the character wishes to mimic in the future, is stored as a

new task. If this new task is selected, it overrides action selection by forcing the recorded

chain of actions to be performed, as they were observed. Each recorded observed behavior

is stored as its own task, and has individual candidacy to be selected for execution by the

behavioral model.

Since the novel observed behaviors are treated as tasks, we must associate state-task

values with them to determine when they should be simulated during task selection (see

Section 5.5.3). We do this by creating a new case library for each recorded behavior, with

state-task value cases for the states visited by the human while executing this behavior, plus

a sparse set of additional cases that are regularly positioned throughout the remainder of the

state space. Those states that were visited during the human’s execution of the behavior are

initialized with “good” values, while all other regions of the state space are given “poor”

values. These state-task values are thereafter updated just like those of standard tasks. If the

112

www.manaraa.com

Figure 5.8: Overview of our mimicking technique. The character is interested in sequences

of actions where the human’s situation improved overall (i.e., positive average reward),

culminating in achieving her goal. This action sequence is recorded and later mimicked.

Figure 5.9: To determine if an observed action sequence is novel to the character, we

compute the average difference, ε , between the recorded actions and those that the character

would normally select.

behavior fails too often (e.g., 3 times consecutively), it is assumed to be entirely ineffective

and is deleted.

An important question is how to determine the beginning and ending of the novel

observed behavior, since there is a continuous stream of observed state-actions. As shown

in Figure 5.8, we do this by keeping all state-actions where an overall improvement toward

achieving the human’s goal was observed (as measured using the character’s own fitness

function). In other words, we keep the subsequence of state-action pairs starting with the

global fitness minimum in the entire sequence, and ending with the pair where the human

achieved her goal. Thus our retained subsequence has the property:

fitness(s0) ≤ fitness(si), ∀i,

where s0 is the global minimum (i.e., first state in the retained state-action subsequence).

Later, when performing simulations during task selection, we allow the entry point into the

recorded sequence to vary depending on the current state of the virtual world sc:

entry point = arg min
si∈sequence

‖sc − si‖.

113

www.manaraa.com

To determine whether an observed behavior is novel to the character, and therefore of

interest for mimicking, the recorded state-action sequence must be compared to the deci-

sion making in the action selection layer of the character’s behavioral model. As shown in

Figure 5.9, we do this by performing action selection for a random subset of the states in the

recorded state-action sequence. We then compute the average component-wise difference,

ε , between the recorded actions and those selected by the behavioral model:

εεε = (∑n−1
j=0(a j − ˜a j))/n.

if ‖εεε‖ ≥ ξ , then Novel, else Known.

We have found that ξ ≤ 20% of the max possible error is effective.

Note that for mimicking to work, the observing character must be able to infer the

human’s goal. In interactive virtual environments, this is usually trivial, since the goal

is largely determined by the high-level situation of the virtual world. For example, in our

rugby case study, the general goal can be determined by which team has the ball. Obviously,

the team with the ball will attempt to score, while the other team will try to stop them. This

general, high level understanding of the human’s goal is sufficient. For example, if the

human’s avatar succeeds in running around the opposing team’s characters and scoring,

then the human’s behavior in that situation is a candidate for mimicking by the character

when it has the ball.

The character can generalize observed behavior if similar enactments are observed

and recorded. This generalization can be done either by performing a weighted blending of

two or more recorded action sequences, or by unexpectedly switching from one sequence

to another. Similarity between recorded behaviors is determined by attempting to overlap

some portion of the recorded state-action sequences by computing the mean component-

wise difference between the actions.

Since we assume that behaviors begin with fitness minima, our mimicking method

cannot learn all interesting behaviors. For example, there are effective strategies where

the human could purposefully do something of poor fitness to misdirect the character. In

such situations, it is likely the character will only learn the portion of the behavior after

the misdirection. Nevertheless, in our experience most valuable novel behaviors do not

114

www.manaraa.com

directly violate the character’s fitness function, and thus can be learned effectively by our

mimicking method.

Relationship To Previous Work

There has long been interest in teaching synthetic agents through observation or demon-

stration. This is because learning through demonstration is a natural form of instruction

used in the real world by humans [Meltzoff and Moore 1992; Yoon 2003]. It is widely

believed that demonstration is one of the most natural and effective human-computer inter-

faces possible, especially for a non-technical user. However, developing an effective and

general demonstration interface has proven elusive.

[Blumberg et al. 2002] allows a human user to interactively train a virtual character

(e.g., a graphical dog). This technique allows the user to lure the character into a certain

position, indirectly demonstrating desirable poses. However, while effective at teaching

some aspects of motor control, this technique does not allow teaching of decision-making

to achieve tasks and goals. Therefore, this technique does not fulfill our needs. [van Lent

and Laird 2001] presents a programmer-oriented technique for learning through demon-

stration. A programmer must define and implement all operators (i.e., actions or tasks)

which a character can perform. The post- and pre-conditions of these operators are then

learned through demonstration (with explicit annotations provided by the programmer after

the demonstration). This technique has proven effective but is not automatic, and therefore

cannot be used for on-line adaptation. [Kasper et al. 2001] presents a technique for teach-

ing a robot simple navigational behaviors. However, this is too limited for our needs. In

[Price 2002], one agent guesses state-action values by observing the behavior of another

agent. While this allows for fine-grain learning, it is not significantly faster than traditional

reinforcement learning and is limited to discrete state/action spaces.

In contrast to these previous techniques, our mimicking method is less general but is

fully automatic, learns quickly, and can easily encapsulate very complex behaviors. The

most novel aspects of our mimicking method include automatic detection of novel behav-

iors, and the use of a fitness function to automatically determine which novel behaviors

may be valuable to imitate.

115

www.manaraa.com

5.5.5 High-Level Learning (for Goal Selection)

It is at the level of goal selection that some previous master-slave interactive behav-

ioral learning techniques have been applied. This is because the decision making is tem-

porally coarse grain and thus it is plausible for the human to provide timely feedback.

Unfortunately, in many cooperative and competitive situations, it is unnatural for the hu-

man to provide explicit feedback to the character. We leverage a different type of feedback:

emotion.

In nature, emotional feedback plays a heavy role in the formation of personality

[Matthews 1997]. For example, it is well known that humans will more often engage in ac-

tivities that make them happy. In algorithmic terms, this means that the desirability (value)

of each goal is updated based on the happiness of the character as a result of performing it.

Emotion is often implemented in a behavioral model (as in [Tu and Terzopoulos

1994; Tomlinson and Blumberg 2002; Egges et al. 2004]) as a small set of variables, e.g.:

Happiness, Fear, etc. The character’s current emotional state is the combination of all

these variables. In our method for high-level adaptation for goal selection, we are only

concerned with the change in happiness. There are many possible events that can affect a

character’s happiness. One of the most well known is success or failure. Note that emotion-

changing triggers are part of the behavioral model, and have been examined in previous

works, so we do not dwell on them further here. The fact that the character’s emotional

state changes is sufficient for our needs.

In our emotion-driven adaptation method, we use a highly abstract representation of

the character’s state: e.g., “Hungry+FoodNearby→ Eat”. We determine the value (i.e.,

predicted resulting happiness, ˜Happiness) of a goal by maintaining a set of weights which

define how important each high-level feature of the abstract state is for a certain goal. The

value of the goal for the current state is then computed as the weighted sum of the state

features using a linear perceptron:

˜Happiness = ∑
i

(s.i ·wi).

In other words, if features Hungry and FoodNearby are high, and the associated weights

are high, then the goal Eat will have a high value. The weights are updated once, either

116

www.manaraa.com

when a new goal is about to be selected or after the current goal has been active for a

sufficient amount of time (e.g., 30 seconds). We update the weights using gradient descent,

based on the state under which the goal was selected, to more accurately be able to predict

the resulting happiness in future iterations:

wi
′ = wi +(γ · s.i · (Happiness− ˜Happiness)), ∀ i,

where γ ≈ 0.5 is the scalar learning rate, ˜Happiness was the predicted happiness, and

Happiness is the actual resulting happiness. This allows the character to not only adjust

under what circumstances a goal is desirable, but also adjust the magnitude of the desire.

An interesting result of our approach is that similar characters can develop widely

varied personalities, depending on their experiences. In fact, a character’s personality may

diverge from the “optimal” personality with respect to its assigned role in a virtual world.

This is because an unlucky character may repeatedly fail at a goal which usually would be

accomplished and thereby learn to avoid that goal. This type of learning has an interesting

parallel to phobias in real humans. If desired, such divergence can be avoided by either not

using our goal-level adaptation method or placing range limits on the weights in the linear

perceptron.

Relationship To Previous Work

Our goal-level adaptation method is very similar to previous work in computer ani-

mation for character training [Blumberg et al. 2002; Evans 2002], as well as methods for

learning from change in emotional state [Tomlinson and Blumberg 2002; Gadanho 2003].

The novel aspect of our approach is the use of emotion to update personality within a multi-

level framework that also provides learning for non-reactive behavior. We are not aware of

such a combination in the literature.

Our use of a linear perceptron to predict the value of a goal is similar to [Evans 2002].

This approach has proven effective, both in our own experiments and in Evans’s work.

However, since the function approximation is linear, there can only be one contiguous

region of the state space where a certain goal is likely to be selected. However, since we

use a highly abstract representation of the state space, this should usually not be a problem.

117

www.manaraa.com

Note that our adaptation technique for cooperative/competitive relationships can co-

exist nicely with previous techniques for master-slave relationships. This is because a char-

acter may have a cooperative/competitive relationship with some humans and/or characters,

and a master-slave relationship with others. For example, to integrate our work and [Evans

2002], both emotional and human-user feedback could be used to train the perceptron.

5.5.6 Using Adaptation in Practice

The accuracy of the learning in our system has proven to be very promising (see Fig-

ures 5.11 and 5.12 in the results section). Also, the performance is well within interactive

speeds (see Table 5.1), and it has a small memory footprint (usually ≤ 2 MB).

Recall that the function of our adaptation system is to supply a behavioral/cognitive

model with supplementary information. Therefore, the way this information is used can be

unique for any given behavioral/cognitive model. For example, given an n-step prediction

of the human’s actions into the future, the character could perform an informed tree search

to plan its own actions through deliberation. Alternatively, this n-step prediction could be

used as extra inputs into a reactive model, even a black box implementation. The infor-

mation can also be used to cooperate with or compete against the human, as the character

wishes.

Our adaptation technique is not limited to small environments with only one human.

Indeed, it can operate in very complex environments of many agents (more than one hu-

man user, etc). However, for adaptation to perform well, the state space definition must

always be reasonably compact. This is because this circumvents the curse of dimensional-

ity, thereby allowing our adaptation technique to be used for interesting, difficult problems.

If necessary, it can even be useful to aggressively approximate the current state—even

though this limits the accuracy of state information, and thereby limits the potential ac-

curacy of the character’s learning, it makes the dimensionality tractable. By keeping the

state space small, we have successfully applied our adaptation technique to very complex

characters/environments.

To further counteract the curse of dimensionality, we have found it useful to modu-

larize the adaptation when possible. For example, consider a character who can perform

118

www.manaraa.com

two independent actions simultaneously (e.g., walk in a given direction while looking at

something else). We can split this into two separate problems, with the adaptation for each

performed separately. This can help simplify both the state and action spaces. Modulariza-

tion is especially useful for our action prediction method, as it is the most sensitive to the

curse of dimensionality of all our learning methods.

In some circumstances, we have found it useful to share acquired knowledge between

all adapting characters in a given animation. In other words, we only use a single repository

for acquired knowledge, which the adapting characters share. This is useful for reducing

storage requirements as well as allowing every character to behave optimally according to

what has been learned.

It is important to point out that, while our adaptation technique does change the be-

havior of a character, it only does so within bounds set by the behavioral/cognitive model.

That is, since our adaptation technique only supplies supplementary information, the be-

havioral/cognitive model is still in full control of decision making. This feature of our

technique is important for stability, and maintaining animator goals.

Each of our learning methods provides a unique degree of adaptation for a character.

We have determined the individual usefulness of each learning method by applying only

one learning method at a time in our rugby case study. Action prediction (low-level learn-

ing) is actually the most powerful of all our methods. This is because low-level decision

making is most critical in achieving overall life-like and effective behavior since actions

are the only decisions directly performed by the character. The second most powerful of

our learning methods is mimicking, as it allows a character to rapidly learn novel, complex

behaviors which affect both the action and task levels. The third most powerful is mid-level

learning for task selection and the least powerful is high-level learning for goal selection.

In some circumstances, it may be desirable to only use a subset of the learning meth-

ods presented in this paper (i.e., not apply learning to all layers of a behavioral/cognitive

model). This is because, as detailed in the previous paragraph, each learning method pro-

vides a different degree of benefit. Also, each method can require a notable amount of

CPU to execute (except goal-level adaptation). Moreover, each learning method must be

integrated separately into a behavioral/cognitive model, which can be a time-consuming

119

www.manaraa.com

undertaking. If a subset of methods is to be used, we recommend choosing methods ac-

cording to the usefulness order given the previous paragraph.

Recall that we utilize a gradient fitness function in our system to guide the charac-

ter’s behavior. It is beyond the scope of this paper to detail methods for creating fitness

functions — but this problem has been thoroughly studied, and thus we point the interested

reader to the literature. Techniques to (semi)automatically create gradient fitness functions

include potential fields [Reif and Wang 1999], value iteration [Sutton and Barto 1998], and

interpolation of discrete state fitness labels. As reported in the literature, even complex

problems can often be adequately represented with gradient fitness functions if they are

properly abstracted (e.g., in motion synthesis for character animation [Sims 1994; Arikan

et al. 2003]). In our case studies reported in this paper (see Section 5.6), we have used

explicitly programmed gradient fitness functions, one for each task.

As discussed previously, our learning methods for both action selection and task se-

lection use case-based reasoning, where the case libraries are initialized with regards to

“generic” human behavior. This initialization is worth discussing in additional detail here

because early character behavior is crucially dependent on this data. These initial cases

are created by training the character “off-line” through interaction with one or more human

users. In other words, the character gains its initial knowledge through learning to interact

with a small set of users that is considered to be representative of the set of all possible

users. Thereafter, the character need only adjust its knowledge to more effectively interact

with a specific human user.

5.6 Experimental Results

5.6.1 Virtual Rugby

Our first case study is of synthetic human players engaging in a sport such as rugby

or American football (see Figure 5.13). This application of our adaptation system to vir-

tual athletics is an interesting challenge; sports in general is known to be a very difficult

environment for autonomous synthetic characters [Stone 2000].

120

www.manaraa.com

In our case study, there is no explicit communication between the characters nor with

the human user. Like the human user, the characters must rely on “visual” perceptions to

ascertain the current state of the virtual world. Specifically, a character senses physical fea-

tures such as its location, the distance from it to other characters, velocities, etc. Perception

is performed by each character individually, and semi-realistic sensory honesty is enforced

(i.e., a character can’t see through the back of its head, etc).

The characters’ and user avatar’s motor control is performed through skeletal anima-

tion, based on a library of motion capture data. Specifically, there is a motion capture clip

associated with each action a character may perform. These clips are blended together

when necessary (using quaternion interpolation) to avoid jittering or discontinuities in the

motion.

Action selection is performed at 15 Hz (once per frame), task selection once every

1 to 8 seconds, and goal selection once after every time a tackle or score occurs. The

action space is composed of a continuous range of acceleration vectors, which represent

the change in running velocity of a player. The human user controls his avatar through a

joystick. The characters have several candidate tasks, such as to charge the user, cautiously

wait for the user to approach, etc. The only two goals are to score (if the character’s team

has the ball) or stop the user from scoring.

As detailed in Section 5.4.2, our adaptation technique assumes that the programmer

provides compact state space definitions as necessary for each learning method. We now

present the state space used for action prediction in this case study. For one-on-one rugby

(one character against one human user), the compact state is defined as the relative (i.e.,

translation invariant) positions of the character and user, and their velocities. Thus the

compact action prediction state space is six-dimensional:

st = (∆x, ∆y, VU
x , VU

y , VC
x , VC

y),

where U = “user” and C = “character”. We ignore non-critical features, such as closeness

to going out-of-bounds, to keep the space dimensionality low. This one-on-one rugby

state space can be extended to support many-on-one rugby by including salient information

about more than one character. We have found that fully representing the closest character,

121

www.manaraa.com

partially representing the second-closest character, and ignoring all more-distant characters

works well.

We use one state space for all mid-level adaptation and mimicking. The state space

is analogous to the one used for action prediction but is smaller, and is from the adapting

character’s frame of reference. It is composed of the translation-invariant separation of the

adapting character and user, and the user’s velocity. Thus the task-level compact state space

is four-dimensional:

st = (∆x, ∆y, VU
x , VU

y).

We purposefully made this space small so that approximate state-task value learning would

occur quickly. When performing task selection, the simulations we run on the most promis-

ing tasks/behaviors provide us with sufficient accuracy. Since the simulations involve all

characters in the virtual world, both one-on-one and many-on-one rugby work well with

the same task-level state space.

The characters are controlled with a cognitive model, which performs decision mak-

ing through a tree search (using A*). To make searching tractable, a discrete version of

the action space is used for deliberation. We support varying goals and tasks by allowing

a character’s fitness function to vary. One of our fitness functions (for a character that is

attempting to tackle the user) is given in pseudo-code in Figure 5.10. This is a gradient

fitness function because a fitness is produced for every state, with fitness increasing to-

ward the goal state (tackling the user). Rather than implementing gradient fitness functions

algorithmically, a popular approach in the literature is to specify fitnesses for a subset of

states and then interpolate. This alternative approach is especially pertinent for use with

our adaptation technique, since our state spaces are real-vector-valued and organized so

that Euclidean-similar state vectors represent similar physical states.

We performed several experiments in this case study, varying the number of charac-

ters on each team. We tested both cooperative relationships between teammates, and com-

petitive relationships between non-teammates. We also performed experiments in which

we varied the initial state and the human user’s behavior. We gathered statistics on the

accuracy of the character’s learning, the increase in its success rate with respect to the

human user, and the runtime performance of our adaptation system. These results are

122

www.manaraa.com

fitness tackler(PU, PC)

{
const float PLAYER SIZE = 0.4;

float dist = ‖PU −PC‖;
if (PU

y > PC
y + PLAYER SIZE) {

/* User has passed character, so she can score easily. */

return (-100 - dist);

}
else if (dist < PLAYER SIZE) {

/* Close enough to tackle. */

return (500);

}
else {

/* Character is in user’s way (where it should be). */

return (100 - dist);

}
}

Figure 5.10: Pseudo-code of our gradient fitness function for a rugby character that will

rush and attempt to tackle the human user. P = “position”, U = “user”, and C = “character”.

This fitness function specifies that the character should get as close to the user as possible

without falling behind him (and thereby allowing the user to score). The character’s cog-

nitive model automatically determines how to behave to maximize long-term fitness. This

function can also be used to detect valuable behaviors to mimic by measuring the fitness of

the human user’s own tackling behaviors.

presented in Figures 5.11 and 5.12, and Table 5.1. Demonstrations are given in the sup-

plementary video accompanying this paper (available from http://rivit.cs.byu.edu/

a3dg/publications.php).

Additional Action Prediction Experiments

We also ran some focused experiments on action prediction, to determine when k-

nearest neighbor or minimax should be used to generalize cases. Recall that action pre-

diction provides more benefit than any of our other per-layer learning methods (see Sec-

tion 5.5.6)—therefore we thought it worthwhile to delve deeper into this specific learning

method. In these experiments, we used a simplified, discrete version of our rugby envi-

ronment. There was no human user, just two characters. The tackler adapted, whereas the

ball-runner exhaustively tested all possible behaviors of 7 actions in length. The results of

123

www.manaraa.com

Rugby CTF Camera

Action prediction time 30 µ sec 33 µ sec 24 µ sec

Simulation time 28 ms 42 ms N/A

Total avg. CPU usage 7% 12% 35%

Table 5.1: Typical performance results of our adaptation system in our three case studies

(for one given adapting character). We used a 1.7 GHz PC with 512 MB RAM.

k = 1 k = 2 k = 6 k = 12

k-NN 69.16 : 1 25.61 : 1 23.69 : 1 29.825 : 1

Minimax 69.16 : 1 239.5 : 1 963.8 : 1 1729 : 1

Table 5.2: Average ratio of tackles to scores for the ball-runner performing all behaviors

of length 7 in a simplified, discrete rugby environment. Note that this is a different envi-

ronment than the continuous world used in the rest of our rugby case study (as shown in

Figures 5.1 and 5.13). With no learning for the tackler character, the ratio was only 5.54 : 1.

these experiments are presented in Tables 5.2 and 5.3. While using k-nearest neighbor lets

the tackler keep the ball-runner to negative forward progress on average, we found that crit-

ical mistakes were sometimes made. Alternatively, using minimax allowed the ball-runner

to achieve positive forward progress on average, but very few critical mistakes were made.

5.6.2 Capture The Flag (CTF)

This case study is based on a well-known research test bed called Gamebots [Kaminka

et al. 2002]. This test bed modifies the popular computer game Unreal Tournament 2003,

allowing a programmer to replace the built-in behavioral model. In Unreal Tournament, the

virtual world is a complex 3D environment of rooms, hallways, stairs, etc. It is populated

with two or more players (virtual humans) organized into two teams. The players are armed

with “tag guns”; once a player is tagged, he is out for a period of time. The objective is to

reach the other team’s flag. A slide show of this case study is given in Figure 5.14.

We have modified the Gamebots test bed so that, rather than overriding the characters’

standard behavioral model, we can simply provide the characters with auxiliary information

and suggestions. It is important to note that what we have done in this case study is added

our adaptation system to an existing, professional behavioral model. Integration, while

not trivial, proved to be straightforward in most aspects. This provides some additional

124

www.manaraa.com

k = 1 k = 2 k = 6 k = 12

k-NN −0.0553 −0.0625 −0.0629 −0.0444

Minimax −0.0553 0.00957 0.0314 0.0325

Table 5.3: Average forward progress made by ball runner before end of game for all behav-

iors of length 7 (in the same simplified, discrete rugby environment used in Table 5.2).

30

40

50

60

70

80

90

100
Rugby

CTF

5 minutes
Time

A
v
g

.
A

c
ti

o
n

 P
re

d
ic

ti
o

n

A
c
c
u

ra
c
y
 (

%
)

Figure 5.11: Accuracy of predicting the human’s actions (L2-norm). This demonstrates the

accuracy of both low- and mid-level learning in our system. This experiment started with

the character having very incorrect information about the human user.

validation for our claim that our adaptation technique can be integrated into most existing

behavioral animation systems.

The Unreal Tournament behavioral model is composed of three layers, named: Team

(goal selection), Squad (task selection), and Bot (action selection). A team is composed

of one or more squads, and a “bot” is an individual character. What is unique about this

behavioral model is that all members of a team or squad share the same Team or Squad

layer instance, respectively. Thus there is unified group decision making. We applied our

adaptation technique to all three of these layers. However, the behavioral model is com-

plex enough that many small “component” decisions are made, and we chose to not apply

adaptation to a number of these because the possible utility was deemed to be too small in

comparison to the workload of integration. If the behavioral model were implemented with

adaptation in mind, integration would likely be easier and more complete.

The most difficult portion of integration was the task-level learning method. Specifi-

cally, it proved challenging to run internal simulations to determine the utility of candidate

tasks. This was difficult because the Unreal Tournament behavioral model is tightly cou-

pled with the rest of the software and could not easily be decoupled to allow “hidden”

125

www.manaraa.com

20

30

40

50

60

70

80
Rugby

CTF

10 minutes
Time

A
v
g

.
S

u
c
c
e
s
s
 R

a
te

 o
f

C
h

a
ra

c
te

r
v
s
.
H

u
m

a
n

 (
%

)

Figure 5.12: This graph demonstrates the effectiveness of our adaptation system as a whole.

For example, in the rugby case study, how often the character scores compared to how often

the human user scores.

executions of the behavioral model, which would not be reflected visually to the human

user. Due to these complexities, we implemented a very simple version of the environment

for use in running simulations. This proved sufficient in our experiments, although the

characters occasionally made critical mistakes in their decision making.

The compact state spaces we use for adaptation in this case study are quite similar to

those in our rugby case study. The notable differences are that only the nearest opponent

and no teammates are represented in the current state, and we supply approximate informa-

tion about nearby obstacles in the virtual environment. All nearby obstacles are represented

by a single mean angle, θ (oriented around the “up” direction), representing the average

direction toward the obstacles according to the character’s or user’s frame of reference.

Assuming the character will never be in a very narrow hallway or room, this angle will

be valid since all nearby obstacles will have surface normals pointing in the same general

direction. Thus, for action prediction, the compact state space is defined as:

st = (∆x, ∆y, VU
x , VU

y , VC
x , VC

y , θ).

The dimensionality of this state space is greater than the space used for action prediction

in our rugby case study. As a result, adaptation is somewhat slower than in our rugby

case study. Moreover, because we use such a crude approximation of the complex virtual

environment, action prediction is of a lower accuracy than in rugby. Nevertheless, our

results are still promising, suggesting that our adaptation technique scales sufficiently to be

useful for complex environments and characters.

126

www.manaraa.com

The results of this case study are presented in Figures 5.11 and 5.12, and Table 5.1.

A slide show of one contiguous animation is given in Figure 5.14. Additional examples

are given in the supplementary video accompanying this paper (available from http://

rivit.cs.byu.edu/a3dg/publications.php).

5.6.3 Automated Cinematography and Attention Selection

Usually, the actions taken in behavioral animation are movement. However, our adap-

tation technique is not limited to applications in movement or navigation. In this case study,

we examine a very different use for adaptation: automatic selection of where a virtual cam-

era or character’s attention should be directed. Autonomous camera control and attention

selection have been topics of interest in computer graphics for years (e.g., [He et al. 1996;

Gillies and Dodgson 2002]).

There is a notable challenge in automatic camera and attention control: the system

must be able to accurately predict the future actions of all agents in the environment. For

example, in cinematography, this is necessary to achieve natural and aesthetically pleasing

camera cuts between views (e.g., cut before two participants begin to interact). For attention

selection, this is helpful in achieving intelligent-looking eye movement and in ensuring

that no critical sensory information is missed. Therefore it is important that user and/or

character behavior be predicted accurately.

In this case study, we performed an experiment where the camera automatically placed

itself within a dynamic scene of many characters who either milled about or stopped to talk

to each other. We only used the action prediction portion of our adaptation technique, and

achieved good results. Note that, as shown in Table 5.1, total CPU usage was higher in this

case study than the others because there were many characters for which to predict actions.

5.7 Summary and Discussion

We have presented a novel technique that enables autonomous cooperative/competitive

virtual characters to quickly adapt on-line due to interaction with a human user. Our system

127

www.manaraa.com

Figure 5.13: (a) The human user (brown skeleton) performs a loop, which succeeds in

getting past the character (red skeleton). As a result, the human can score. (b) Now that

the character has adapted, the next time the human attempts a loop it predicts the human’s

actions and tackles him.

is composed of a small set of independent learning methods, which are applied individu-

ally to the layers of a behavioral/cognitive model. Our system is designed around a com-

mon behavioral animation framework, and thus can be used with most existing behavioral

animation systems. Our system fully supports both reactive (behavioral) and deliberative

(cognitive) decision making, in discrete or continuous state/action spaces. Our contribution

in this paper is important because we present a solution for a previously unsolved problem:

fast adaptation for cooperative/competitive virtual characters. Adaptation is an important

problem for many interactive graphical applications, such as training simulators, computer

games, etc.

As discussed throughout this paper, the layered approach we have taken to interactive

adaptation is logical with regards to current trends in diverse but related fields (e.g., be-

havioral animation, machine learning, multi-agent systems, etc). There is also interesting

validation from psychology, where researchers postulate that the best approach to model

human cognition is in computational layers [Newell 1990].

Our knowledge-gathering approach to adaptation can be seen as hitting a “sweet spot”

between nature vs. nurture. This is because the character begins with a fundamental skill

128

www.manaraa.com

Figure 5.14: Snapshots of a single Capture The Flag (CTF) animation. The human user

(in green and black) is on the defending team. They are defeated by the attacking team

(characters in blue and gray), who have adapted to the human’s tactics and learned to work

well together as a team. The last remaining defender, who has adapted to become a coward,

runs away.

set (motor control, perception, and decision making), and then gathers knowledge in an

on-line fashion. The character then uses this knowledge to more optimally interact with the

human user.

An interesting benefit of our technique is that, since a character can adapt on-line,

it can fill “gaps” in its behavioral model. In other words, a programmer does not have to

carefully construct the behavioral model such that it will immediately handle every possible

situation properly. This can also make a behavioral model more robust. Further, in envi-

ronments where there is no pareto-optimal Nash equilibrium (i.e., no single best strategy),

adaptation may be necessary to achieve and maintain good behavior.

However, while our multi-level adaptation technique has proven to work well, there

are some weaknesses that are important to recognize. First, while knowledge gathering

is very fast, using that knowledge does require a notable amount of CPU. As a result, it

may not be plausible to have many adapting characters in the same interactive animation.

Second, integrating our adaptation technique into an existing behavioral/cognitive model is

129

www.manaraa.com

not trivial but appears to usually be straightforward. Of course, integration will be easier

with new behavioral/cognitive models that are implemented with adaptation in mind. Third,

the success of our adaptation technique for a given environment/character depends on the

programmer supplying an adequate compact state space representation and fitness function.

Therefore, to effectively use our adaptation technique, the programmer may have to develop

some new skills. Finally, since we apply discrete learning methods to different layers,

there is no smooth “inbetweening” for additional intermediate layers. However, note that

any layer of a behavioral/cognitive model can use one of our learning methods, based on

the temporal granularity of its decision making (see Figures 5.3 and 5.4). Therefore, our

adaptation technique can be applied to most existing behavioral animation systems and

autonomous characters.

Although our technique has proven effective in our case studies, there is no guaran-

tee that it will be effective for every imaginable character and environment. However, as

long as our assumptions in Section 5.4.2 are met, we believe that our technique will work

well for nearly all characters and environments. This is because the requirements of the

underlying learning methods (and the system as a whole) will be met.

Another possible application of our adaptation technique is for one character to learn

to adapt to another virtual character. This is interesting because it can result in very natural-

looking behavioral animation, as realistic learning is reflected as the animation proceeds.

Note that this use of adaptation is also applicable to off-line animation, as human interac-

tion is not required. Another possible use of our technique is the creation of entirely new

behavioral models in an on-line fashion by leveraging our work in this paper to perform

learning through demonstration. We can use the state-action model of the human’s action

selection to determine the decision making of a character. One drawback to this approach

is that the decision making is somewhat shallow.

130

www.manaraa.com

Part IV

Creating Behavior Through

Demonstration

As discussed in the introduction of this dissertation, the design and programming of

behavioral/cognitive models is very difficult and time-consuming. In Part II we presented

techniques for simplifying the construction of behavioral/cognitive models by generating

state-action pairs through planning. However, while this approach is useful in certain cir-

cumstances, it lacks scalability, it is difficult to achieve specific styles of behavior, and the

required fitness function can only be specified by a programmer.

Part IV presents two chapters on simplified construction of behavioral models through

programming by demonstration (i.e., learning by observation). This addresses problem

Problem #3 listed in Chapter 1.

Chapter 6 introduces a technique for learning policies from human example. This

technique is related to existing methods in the robotics and agents literature but is specifi-

cally applied to behavioral animation and includes a novel conflict elimination algorithm.

This paper is currently under review by Journal of Graphics Tools.

Jonathan Dinerstein, Trent Crow, and Parris K. Egbert. “Intelligence capture

— Automatic behavioral animation from human example”. To be submitted,

2005.

Chapter 7 discusses how autonomous virtual character behavior can be specified and

synthesized in a data-driven manner. Sequences of actions are automatically captured from

human demonstration. This data is then used to synthesize novel behaviors by “cutting

and pasting” disjoint segments of the demonstrated action sequences. This data-driven

approach is interesting because it has been empirically shown to be very scalable, intuitive,

131

www.manaraa.com

and powerful. This paper has been submitted to IEEE Transactions on Visualization and

Computer Graphics and is currently under review.

Jonathan Dinerstein, Parris K. Egbert, Dan Ventura, and Michael Goodrich.

“Data-driven programming and control for autonomous virtual characters”.

Submitted to IEEE Transactions on Visualization and Computer Graphics,

April 2005.

132

www.manaraa.com

Chapter 6

Intelligence Capture — Automatic Behavioral Animation

from Human Example

To be submitted, 2005.

Abstract: This paper presents intelligence capture, a novel technique for programming

behavioral animation by demonstration. This technique operates in two modes: training

and autonomous behavior. In training mode, the human user has direct control over the

virtual character through an input device such as a joystick. The human user demonstrates

the desired behavior for the character by dictating its actions during an interactive anima-

tion. This demonstration is recorded as a set of state-action pairs, each pair representing

the specific action the human chose for the character when in the associated state. This

data is then processed to ensure that any conflicts in the pairs are eliminated. Later, when

the character is to behave autonomously, the recorded state-action pairs are generalized to

form a continuous state-to-action mapping. This mapping dictates the action the character

is to perform for any given state. Thus a behavioral model can be automatically constructed

by an animator-programmer team in an intuitive manner, eliminating a programming bot-

tleneck and making this process simpler and quicker. Moreover, the animator has greater

control over the creation of the behavioral model, and stylized behavior can easily be re-

alized. While not a panacea, intelligence capture can effectively produce many types of

behavioral animation.

133

www.manaraa.com

6.1 Introduction

In behavioral animation [Millar et al. 1999], virtual characters are designed to be

autonomous agents. If given sufficient intelligence, the characters can animate themselves

by choosing actions to perform (where each action is a motion for the character). This is

often done by using a library of motion capture data, each motion clip being associated

with an action the character may select. Behavioral animation has become popular for

interactive virtual worlds where a character’s exact behavior cannot be dictated a priori

(e.g., computer games, training simulators, etc). Behavioral animation has also been used

in film production, in particular for large groups or crowds of characters.

Despite the success of behavioral animation in certain domains, some important ar-

guments have been brought against current techniques [Isla and Blumberg 2002; Devillers

et al. 2002]:

1. Behavioral models can often be very difficult and time-consuming to design and

program.

2. Human decision making can be difficult to quantify realistically into a model.

In this paper we present intelligence capture, a general and reusable technique for

automatic machine learning of a behavioral model by mimicking demonstrated human be-

havior. This technique not only provides a natural and simple method for the construction

of behavioral models, but it also allows an animator to be intimately involved in the con-

struction of the behavioral model. While not a panacea, intelligence capture can effectively

produce many categories of stylized intelligent behavior very quickly in an intuitive man-

ner.

First, the human user demonstrates a behavior for the character by controlling the

character during an interactive animation. This demonstration is recorded as a set of state-

action pairs, each of which represents how the character should react to a given configu-

ration of the virtual world. This data is then processed to ensure that any conflicts in the

examples are eliminated. Later, when the character behaves autonomously, the recorded

state-action pairs are generalized to form a continuous state-to-action mapping. This map-

ping dictates the behavior of the character (i.e., how it should respond to any given state

134

www.manaraa.com

it may encounter). This mapping can be created through any continuous form of interpo-

lation. We use machine learning techniques (either k-nearest neighbor or support vector

machines (SVM) [Mitchell 1997]) that are well-known and robust.

6.1.1 Previous Work

Several notable techniques for behavioral animation have been developed, e.g., [Reynolds

1987; Funge et al. 1999; Monzani et al. 2001; Blumberg et al. 2002; Gillies and Dodgson

2002; Egges et al. 2004]. Unfortunately, all of these techniques require that a behavioral

model be explicitly programmed. As discussed in the introduction, this is a difficult task.

There has recently been interest in reducing these problems through the use of ma-

chine learning. In [Blumberg et al. 2002; Evans 2002; Dinerstein and Egbert 2005], tech-

niques are presented for allowing a character to adapt its behavior online. However, these

techniques still require that a full behavioral model be explicitly programmed. Another

technique, presented in [Dinerstein et al. 2004b], allows a character to learn a behavioral

model offline given only a fitness function. However, this technique has trouble learning

highly complex behavior, and it is difficult to achieve stylized behavior. A technique de-

veloped in the computer game community is [Alexander 2002], where high-level features

of the desired behavior are learned through demonstration. Unfortunately, since this tech-

nique only learns at a high level, it cannot produce complete behavioral models (merely

parameters for the behavior).

Some research has been performed in using machine learning for function approxima-

tion to aid in computer animation. For example [Grzeszczuk et al. 1998], where physically-

based animation is accelerated through approximation of the state transitions. In [Diner-

stein and Egbert 2004], deliberative behavioral models are sped up through approximation

of the decision making. Another example is [Faloutsos et al. 2001], where the proper

situations in which to use different skeletal motor controllers are learned. In contrast to

these techniques, we use machine learning to approximate explicitly demonstrated human

decision-making. Specifically, state-action pairs extracted from observation of human be-

havior are used to infer a policy.

The agents and robotics communities have long recognized the need for simplified

135

www.manaraa.com

programming of agent AI. There has been some interesting work performed in program-

ming by demonstration (e.g., [van Lent and Laird 2001; Kasper et al. 2001; Price 2002;

Nicolescu 2003]), where an agent is instructed on what to do through demonstrations by

a user. Our intelligence capture technique fits in this category but is specifically designed

for agents that are virtual characters. The existing technique that is most related to our

work is [Kasper et al. 2001], where a robot (using a neural net) learns a state → action

mapping from demonstration. However, our technique is unique in many aspects, in par-

ticular because it performs conflict elimination and is applied within the unique constraints

of computer animation. We will discuss in more detail later why these contributions are

significant.

Contribution We present intelligence capture, a novel technique for programming be-

havioral animation through demonstration. To our knowledge, this is a previously unex-

plored approach to behavioral animation. With regards to previous work, we make the

following notable contributions in this paper:

• The application of agent programming-by-demonstration concepts to behavioral an-

imation.

• A novel conflict elimination method (previous techniques in agents/robotics have

merely ignored conflicts).

6.2 Intelligence Capture

6.2.1 Overview and Formulation

Our intelligence capture technique helps overcome the difficulties inherent in pro-

gramming behavioral models by providing an intuitive programming-by-demonstration in-

terface. Thus an animator-programmer team can more easily create a behavioral model as

compared to a programmer using traditional methods. Intelligence capture is summarized

in Figure 6.1. It includes the following steps:

1. Train:

136

www.manaraa.com

Figure 6.1: The workflow of intelligence capture. (a) The simulator, which drives the

animation, provides a current state sss. This is visualized for the animator. The animator

responds with an action aaa, which is recorded and then used to update the simulation. (b)

Once a sufficient set of state-action examples have been recorded, they are processed to

eliminate conflicts and then generalized into a continuous policy function. This policy is

used online as our behavioral model.

(a) Observe and record state-action pairs.

(b) Eliminate conflicts.

2. Autonomous behavior:

(a) Generalize recorded state-action pairs into a policy µ .

(b) Use µ to compute decisions for the character, once per fixed time step ∆t.

Intelligence capture is a process of learning to approximate intelligent decision mak-

ing from human example. We formulate decision making as a state-to-action mapping, or

policy:

µ : sss→ aaa, (6.1)

where sss ∈ R
n is a compact representation of the current state of the character and its world,

and aaa ∈ R
m is the action chosen to perform. Each component of sss is a salient feature

defining some important aspect of the current state. If the character has a finite repertoire

of possible actions, then aaa is quantized.

A state-action pair is denoted 〈sss,aaa〉. The human demonstrator’s behavior is sam-

pled at a fixed time step ∆t, which is equal to the rate at which the character will choose

actions when it is autonomous. Thus the observed behavior is a set of discrete cases,

B = {〈sss,aaa〉1, . . . , 〈sss,aaa〉q}. Each pair represents one case of the target behavior. There is

137

www.manaraa.com

no ordering of the pairs in the set. We construct µ by generalizing these cases. Specifi-

cally, to ensure that the character’s behavior is smooth, we construct µ by interpolating the

actions associated with these cases. Because sss ∈ R
n and aaa ∈ R

m, we can theoretically use

any continuous real-vector-valued interpolation scheme. In our implementation, we either

use continuous k-nearest neighbor or SVM, as detailed later in Section 6.2.3.

For generalization of cases to succeed, it is critical that the state and action spaces be

organized by the programmer such that similar states usually map to similar actions. In

other words, ‖sssi −sss j‖ < α ⇒ ‖aaai −aaa j‖ < β , where α and β are small scalar thresholds

and ‖ · ‖ is the Euclidean metric. Certainly, this constraint need not always hold, but the

smoother the mapping the more accurate the learned policy µ will be. Moreover, it is

important for the programmer to design the state space such that the dimensionality n of

sss ∈ R
n is as small as possible. This is due to the curse of dimensionality, a famous thesis in

machine learning stating that the difficulty of learning a mapping increases exponentially

with each additional input dimension [Mitchell 1997].

For more information on designing effective state and action spaces, see the experi-

mental results section of this paper, or the literature cited in the previous work section (e.g.,

[Reynolds 1987; Grzeszczuk et al. 1998; Dinerstein et al. 2004b; Dinerstein and Egbert

2004]).

6.2.2 Training

Intelligence capture operates in two modes: training and autonomous behavior. These

modes correspond to whether the character is currently learning how to behave or is acting

autonomously based on what it has already learned. Usually, training will occur once,

following by unlimited uses of the trained character.

In the training mode, both the animator and programmer need to be involved. First,

the programmer integrates intelligence capture into an existing (but thus far “brainless”)

character. This integration involves designing the state and action spaces such that µ will

be learnable. Once integration is complete, the animator is free to create behavioral models

for the character at will. In fact, the creation of multiple behavioral models for one character

may be interesting to achieve different stylized behaviors, etc.

138

www.manaraa.com

Training by the animator proceeds as follows. The character and its virtual world

are visualized in real-time, and the animator has interactive control over the actions of the

character (e.g., through the keyboard, joystick, etc). Note that the continuous, real-time

presentation of state information to the animator is critical to make the character training

process as natural as possible, as this is analogous to how humans naturally perceive the

real world. As the simulation-visualization of the character and its world proceeds in real-

time, the animator supplies the character with the actions it is to perform. This information

is saved in the form of state-action pairs. Once enough state-action examples have been

collected, all conflicting examples are automatically eliminated, as described below. We

now have a discrete but representative sampling of the entire policy function µ . Moreover,

because the demonstrator has had control of the character, she has forced it into regions

of the state space of interest — therefore the density of the sampling corresponds to the

importance of each region of the state space.

Once demonstration is complete (i.e., enough state-action examples have been col-

lected), all conflicting examples are automatically eliminated. Elimination of conflicts is

extremely important. This is because human behavior is not always deterministic, and

therefore some examples will likely conflict (i.e., for a given state, more than one action

may be proposed). This is an important issue, because machine learning will “average”

conflicting examples, creating a new action for that state. This can result in unrealistic or

unintelligent-looking animation. For example, consider a car driver who sometimes turns

either left or right to avoid an obstacle in the road. If these actions are averaged, this could

result in driving straight into the obstacle. Therefore, to ensure that the learned policy is

true to the human trainer’s behavior, it is important to eliminate all conflicts in the exam-

ples.

Conflicting examples are formally defined as:

if ‖sssi −sss j‖ < ν and ‖aaai −aaa j‖ > υ , then conflicting, (6.2)

where ν and υ are scalar thresholds. In other words, if two cases have similar states but

notably different actions, they are considered to be conflicting. To eliminate conflicts,

we cannot simply arbitrarily delete cases involved in a conflict — this can lead to high

139

www.manaraa.com

frequencies in the policy. Rather, we must ensure that each example is not an outlier with

respect to its neighborhood in the state space. Our goal is to remove those examples that

represent high frequencies. We define a neighborhood as the l cases closest to the current

example in the state space. We define an outlier as an example whose action is significantly

different from the median action of the examples in its neighborhood.

Pseudo-code for our conflict elimination technique is given in Figure 6.2. To compli-

ment this pseudo-code, we now describe our technique. In brief, each state-action pair is

tested in turn to determine whether it is an outlier. The current pair is denoted 〈sss,aaa〉′. First,

the l neighbors of the current example are found and their median action aaavm is computed,

using the following vector-median method [Koschan and Abidi 2001]:

aaavm ∈ {aaa1,aaa2, . . . ,aaal},

where
l

∑
i=1

‖aaavm −aaai‖ ≤
l

∑
i=1

‖aaa j −aaai‖, j = 1,2, . . . , l. (6.3)

In other words, aaavm is equal to the action of the neighbor which is the closest to all other

actions of the neighbors according to the Euclidean metric. Finally, if ‖aaavm – aaa′‖ > η , then

the case is an outlier and is marked for deletion. Marked cases are retained for testing the

other cases, and then are all deleted as a batch at the conclusion of the conflict elimination

algorithm. In our experiments, we have found that it works well to use l = 5. If there are

not that many neighboring examples within a reasonably small region of the state space

(e.g., 15% per axis), we assume that this portion of the state space is undersampled and do

not consider deleting this example. To determine outliers, we use a threshold η of about

10% of the possible range of component values in aaa.

Note that a behavioral model can be incrementally constructed by adding examples,

testing it, then adding further examples to it, and so forth. Also, a model can be naturally

edited in a simple fashion by adding new examples that conflict with existing examples;

elimination of conflicts will then naturally delete examples that do not correspond with the

most desired behavior. Even stronger editing can be achieved by explicitly deleting any

local state-action pairs that disagree with newly observed and recorded pairs.

140

www.manaraa.com

For each recorded pair 〈sss,aaa〉′ ...

Find l closest neighbors of 〈sss,aaa〉′
if (not l close neighbors)

Skip 〈sss,aaa〉′
Compute median action aaavm of l neighbors using Equation 6.3

if (‖aaavm – aaa′‖ > η)

Mark 〈sss,aaa〉′
Delete all marked pairs

Figure 6.2: Conflict elimination algorithm.

6.2.3 Autonomous Behavior

Once an adequate set of state-action pairs has been collected, we must construct the

continuous policy, µ : sss → aaa. We do this through one of two popular machine learning

techniques: k-nearest neighbor or SVM. We have chosen these two techniques because

they are powerful and well-established, yet have contrasting strengths and weaknesses.

The continuous k-nearest neighbor (k-nn) algorithm is one of the most well-established

and popular machine learning techniques [Mitchell 1997]. In this technique, examples of

the target function are retained explicitly. Then, to compute new values of the function, the

k examples nearest to the input vector sss are distance-weighted and averaged:

aaa =
∑k

i=1(wi ·aaai)

∑k
i=1 wi

, where wi =
1

‖sss−sssi‖2
p

. (6.4)

p ∈ R
+ represents the Lp-norm distance metric used (usually, p = 2). Thus k-nn is a local

approximation technique. The primary strength of k-nn is that there are strong guarantees

about its accuracy, as it merely interpolates local cases (e.g., it can robustly handle non-

smooth mappings, and the outputs will be within the convex hull of the k local cases).

Another notable strength is that, based on recent research [Aggarwal et al. 2001], we know

that k-nn can remain robust for high-dimension problems when using small values of p

(e.g., p = 0.1). Therefore we use k-nn whenever the demonstrated policy is non-smooth

or of high dimensionality. K-nn has proven quite robust for our application. However,

k-nn does have some weaknesses in our application, such as a large memory footprint (∼1

MB per policy), and more state-action cases are required than with SVM due to weaker

generalization.

141

www.manaraa.com

The support vector machine (SVM) [Mitchell 1997] is an interesting alternative to

k-nn due to disparate strengths and weaknesses. SVM is a learning technique that produces

an artificial neural network. It is a compact and global technique, because the entire net-

work contributes in computing an answer. As a result, it performs powerful generalization

(with guarantees of no overfitting), but can struggle with highly non-smooth mappings.

Moreover, SVM guarantees optimal neural net learning; i.e., it converges to the global

minimum mean-squared-error with probability 1. We have found SVM to be useful when

µ is smooth, especially when it is C0 or C1 continuous. However, such a smooth mapping

usually requires that the programmer define excellent state and action spaces. This can

prove challenging in practice, and therefore we have found k-nn to be a better choice in the

majority of cases since it is more robust for non-smooth mappings.

Due to the inherent challenge in designing smooth mappings, a great deal of work has

been performed in feature construction (the creation of effective input features from raw

inputs) and feature selection (the selection of a minimal subset of candidate input features)

[Guyon and Elisseeff 2003]. However, much of this work is still at a research (not yet

practical) stage. Nevertheless, some techniques have matured to fruition. Some plausible

approaches for feature selection for state → action mapping are discussed in [Dinerstein

and Egbert 2004]. However, at this point in time, no algorithm has proven better than the

human brain at designing effective mappings. As a result, in this paper we focus on the

traditional manual approach.

The components of our system (state-action capture facility, conflict elimination, and

machine learning tool), if implemented in a sufficiently general manner, are fully reusable.

Thus the intelligence capture system is an inexpensive, portable tool. All that must be

done to use this tool is for a programmer to develop the character and its virtual world

(work that must be done anyway for behavioral computer animation), and then integrate

the existing intelligence capture components. An animator then has free reign to create and

test behavioral models at will.

142

www.manaraa.com

6.3 Experimental Results

We implemented our intelligence capture technique and used it to perform a series

of experiments. These experiments were designed to cover, in a general fashion, most

of the major distinguishing aspects of popular uses of behavioral animation. Between

our favorable experimental results, and the results from the agents/robotics literature on

programming-by-demonstration (see the previous work section), we have some empirical

evidence that intelligence capture is a viable tool for creating some popular types of behav-

ioral models.

When using k-nn in our experiments, we used k ∈ [2,7] and 32-bit single-precision

floating point accuracy. We also assigned an importance-weighted scale to each axis of

the state space, determined by that axis’ importance for calculating distances (these scales

can be computed automatically as discussed in [Mitchell 1997]). For SVM we used 64-bit

accuracy, and all target function inputs and outputs were normalized to have zero means

and unit variances. All of these experiments were performed on a 1.7 GHz processor with

512 MB RAM.

The results we achieved in our experiments are summarized in Table 6.1.

k-nn

Number of examples required for k-nn 6,000

Animator time spent capturing all examples 8 minutes

Disk space required for initial examples ≤ 2 MB

Time to eliminate conflicts 16 seconds

RAM required for final examples ≤ 1 MB

Time to compute new target function values 13 microseconds

SVM

Time to train an artificial neural network 2.5 minutes

Time to compute new target function values 2 microseconds

Table 6.1: Summary of average usage and performance results (with a 1.7 GHz processor,

512 MB RAM, k ∈ [2,7], kd-tree).

143

www.manaraa.com

Figure 6.3: A spaceship pilot (autonomous virtual character) intelligently maneuvers within

an asteroid field. Its animation is guided by a behavioral model constructed through intel-

ligence capture. The pilot’s goal is to cross the asteroid field (forward motion) as quickly

as possible with no collisions.

6.3.1 Spaceship Pilot

In our first experiment, the virtual character was a spaceship pilot (see Figure 6.3).

The pilot’s task was to maneuver the spaceship through an unknown asteroid field, flying

from one end of the field to the other as quickly as possible with no collisions. To ensure

that this task would be difficult, we limited the maneuverability of the spaceship so that

the pilot would have to plan his path through space well in advance. We also placed the

asteroids close together. The animation ran at 15 frames per second, with an intelligent

action computed for each frame. The virtual pilot had two controls over the spaceship: yaw

(rotation around the Y-axis) and pitch (rotation around the X-axis). The state and action

spaces were real-valued (i.e., continuous). Thus behavioral animation was performed at a

fairly low level, with action selection being fine grain. Intelligence capture was performed

by rendering the spaceship as a wireframe (so asteroids beyond it could be seen by the

human animator), and controlling it through a joystick.

µ was formulated as follows. The target function inputs were the spaceship’s current

orientation (θ ,φ), and the separation between the spaceship and the two nearest asteroids

144

www.manaraa.com

(ps −pa1 and ps −pa2). Thus there were 8 inputs total: sss = (θ ,φ ,xs − xa1,ys − ya1,zs −
za1,xs − xa2,ys − ya2,zs − za2). There were two outputs, which determined the change in

the spaceship’s orientation: aaa = (∆θ ,∆φ). All of these inputs and outputs were continuous

spatially. Temporally, µ was computed discretely according to ∆t (15 Hz).

The k-nearest neighbor algorithm used about 10,000 examples online, requiring about

0.4 MB of RAM. These examples took about 10 minutes to capture. Note that it is because

of the low-level, temporally fine-grain operation of this behavioral model that so many

examples were required (a behavioral model applied at a higher, coarser level requires far

fewer examples, as discussed in our next experiment). We achieved good results in this

experiment of intelligence capture, as shown in Figure 6.3 and in the accompanying video

that can be found at http://rivit.cs.byu.edu/a3dg/publications.php. The behavioral model

worked well for all random asteroid fields we tried, and the animation was human-like,

intelligent, and aesthetically pleasing. SVM also performed well, producing even smoother

animation while requiring fewer examples. However, it proved to be more sensitive to the

choice of state space (it often failed to produce a good behavioral model when given a

suboptimal state space).

To gain a point of reference, we also implemented an explicit behavioral model for our

spaceship pilot. Programming this explicit model took over a week (and we are somewhat

experienced at developing behavioral models). In contrast, constructing a behavioral model

through intelligence capture took a matter of minutes once the intelligence capture class

was integrated.

6.3.2 Crowd of Articulated Human Characters

In our next experiment we created behavioral models to control groups of articulated

human characters (see Figure 6.4). The behavioral model operated at a high level in the an-

imation hierarchy, controlling the decision making of the character (i.e., “turn left,” “walk

forward,” etc), while the nuts-and-bolts animation was carried out by a traditional skeletal

system. Thus the behavioral model only specified a small set of discrete actions (the real-

valued policy output was quantized to be discrete). Cloth animation (for the characters’

145

www.manaraa.com

clothing) in this experiment was performed using a standard spring system. We created sev-

eral crowd animations. In each animation, all characters used the same behavioral model,

showing the variety of behavior that can be achieved. Note that each behavioral model we

constructed only required a few minutes to capture all necessary state-action examples, and

only a few thousand examples were required for use online.

Figure 6.4: A crowd of articulated human characters who intelligently move about. When

a boulder falls from the sky, the characters panic and run. Action selection is performed by

the behavioral model, and motor control by a traditional skeletal animation system.

One of our primary goals in this experiment was to show that intelligence capture can

be used for a crowd of interacting characters. To do this, we performed several brief intel-

ligence capture iterations, randomly placing some static characters in a scene. The human

trainer then guided the learning character through the scene. Thus the character learned

how to behave in response to other agents around it in arbitrary positions. Ultimately, the

character learned behavior such as to not walk into another character, without the need for

explicit collision detection.

We created two policies. The first was used before the boulder impact, and the second

afterwards. In the first policy (pre-boulder), the environment was discretized into a 2D grid,

and the character could walk to the three adjacent squares ahead of it, or turn in prepara-

tion for walking to a another adjacent square. sss was formulated as the current orientation

of the character, and the separation between it and the next three closest characters. Thus

sss had seven components. aaa was formulated as a single component, over which the five

possible actions were distributed in the following order: turn left, forward-left, forward,

146

www.manaraa.com

forward-right, turn right. Decision making was computed at a rate ∆t of about twice per

second. After the boulder hit the ground, we switched to another policy (with continu-

ous state/action spaces) that simply directed the characters to run straight away from the

boulder.

6.4 Discussion

It is important to note that intelligence capture is not a simple “tape recording” of

computer animation (like motion capture). Rather, since intelligence capture constructs a

continuous policy function, an infinite number of unique animations can be generated using

a single captured behavioral model.

Intelligence capture is pertinent for all currently popular uses of behavioral animation,

including: film, computer games, and training simulators. Intelligence capture works well

with existing animation techniques, because it merely provides a new interface for creation

of behavioral models. However, intelligence capture cannot create all types of behavioral

models, as we clarify shortly.

Conflict elimination is important because a demonstrator is unlikely to perform the

same task twice in exactly the same manner. Moreover, conflicts may be impossible to

avoid due to varying delays in response time. These conflicts, if left unresolved, are likely

to result in either unintended behavior or temporal aliasing (dithering) in the animation.

Our conflict elimination technique safely removes high frequencies in the state-action pairs,

helping make µ a smooth and representative mapping.

To further help avoid temporal aliasing, we have found it useful to apply the learned

behavioral model at the most temporally coarse-grain level possible. This naturally spreads

out the action selection process, making visible dithering between actions less likely. The

risk of temporal aliasing can be further reduced by constructing µ through SVM, because

it performs powerful generalization. Nevertheless, regardless of these precautions, there is

no formal guarantee that our technique will never suffer from temporal aliasing.

As has been shown empirically, intelligence capture is simple to implement, fast, and

reusable. Its use is also natural and straightforward, and there is empirical evidence that

147

www.manaraa.com

it is a viable tool for computer animators. We have found that integrating our intelligence

capture technique (implemented as a C++ class) into existing animation software usually

requires very little effort. Behavioral models can then be constructed by an animator in a

matter of minutes and tested within the same framework. Also, note that our approach has

a nearly fixed online execution time (unlike some other techniques for explicit behavioral

models), and can be computed in a matter of microseconds, which is a useful feature for

interactive computer animation.

However, intelligence capture does have some issues. First, the use of the k-nearest

neighbor algorithm can require storing many examples, and thus the memory footprint is

not negligible. Another issue is that there exists a “communication bottleneck” between

the animator and the computer during training in intelligence capture; thus the current state

must be presented concisely to the demonstrator and aaa must be of reasonable dimension-

ality. Next, note that an animator’s choice of actions may not make the character traverse

into all regions of the state space, leaving gaps in µ . This problem can be automatically

solved by, during training, periodically forcing the character into these unvisited regions

of the state space. Another issue is that, even with conflict elimination, significant delay

in the animator’s reactions can still lead to an inaccurate behavioral model; e.g., observing

an inaccurate state-action pair because the current state does not actually correlate with the

delayed action. This problem can be reduced through conscious effort by the animator,

and by keeping ∆t as large as possible. Another important issue is perceptual aliasing: the

possibility that two dissimilar states may appear identical due to our compact state repre-

sentation. This can result in a character making mistakes. However, perceptual aliasing

can be minimized through effective design of the compact state space. The final issue with

intelligence capture is that its scalability is limited due to the curse of dimensionality. The

state space must be kept reasonably low-dimensional, or attempts to learn µ will fail.

There are certain types of behavior, involving a large amount of state information

(such as chess), that could never be constructed through machine learning in the manner

we propose. Also, intelligence capture can only learn deterministic policies. However, we

(and researchers in agents/robotics) have empirically shown that some classes of behavior

popular in behavioral animation can be learned. Our own case studies cover a wide range

148

www.manaraa.com

of temporal decision-making granularities, with rigid and articulated characters, involving

navigation and collision avoidance behavior. There are many other interesting case stud-

ies of programming agents by demonstration, such as [van Lent and Laird 2001] which

examines programming-by-demonstration for aircraft piloting, etc.

Some behavioral models can operate best as part of a complete synthetic brain archi-

tecture [Isla et al. 2001], where the brain chooses goals, performs sensing, maintains the

character’s internal state, etc. This may be especially useful for intelligence capture, be-

cause the decision making learned by intelligence capture is shallow: simply reactions to

perceived states.

An important topic we have not yet discussed is context-sensitive decision making.

Most behavioral models are non-context sensitive, and it has been shown in the AI literature

that the majority of intelligent tasks can be achieved through non-context sensitive logic.

However, we have found that context can be very interesting for portraying emotion. For

example, a human often behaves very differently whether she is happy, afraid, angry, etc.

This same variety can be achieved easily in intelligence capture by constructing a set of

behavioral models, each representing a different emotion. Then, at any given time, the

behavioral model to use is selected based on the character’s current emotional state. This is

also valuable for achieving non-deterministic animation, as policies (being functions) are

deterministic.

Finally, modularity in a behavioral model is well known to help produce better re-

sults for autonomous characters. Intelligence capture can be used in a modular fashion by

capturing separate policies for unrelated portions of a complete behavioral model. This

can help limit the number of inputs (dimensionality of sss) for each policy, which can sig-

nificantly reduce the number of state-action examples required and simplify the machine

learning process. Also, independent models can be learned for distinct tasks and/or goals

that a virtual character may need to perform.

An unanswered question is whether another behavior representation (rather than a

policy) would be more effective for behavioral animation programming-by-demonstration.

The two approaches championed in the field of robotics are learning policies [Kasper et al.

149

www.manaraa.com

2001] (like our technique), and learning task structure or pre-/post-conditions for behav-

ioral sub-modules [van Lent and Laird 2001; Nicolescu 2003]. We have opted for learning

policies because it allows for maximum programming-by-demonstration versus explicit

programming. An interesting area for future work is to examine the benefits to behavioral

animation in learning pre-/post-conditions, and/or perhaps develop a novel representation.

150

www.manaraa.com

Chapter 7

Data-Driven Programming and Behavior for Autonomous

Virtual Characters

Submitted to IEEE Transactions on Visualization and Computer Graphics, April 2005.

Abstract: We present a novel technique for behavioral animation through data-driven

behavior synthesis. This technique has two key features: it provides realistic and natu-

ral character behavior, and has a programming-by-demonstration interface. Thus we can

quickly create compelling and realistic autonomous virtual characters that exhibit stylized

behavior. First, the human user demonstrates behavior for the character by controlling it

(e.g., with a joystick) during an interactive session. Each demonstration is recorded as a

sequence of discrete actions. Later, when the character behaves autonomously, it performs

data-driven behavior synthesis by concatenating segments of action sequences. The choice

of action sequence segments is guided by simulations that predict fitness. We empirically

show that our technique is robust, computationally feasible, general, and produces effec-

tive character behavior. Also, the interface is intuitive enough that realistic virtual character

behavior can be effectively created by non-technical users.

Keywords: behavioral animation, programming by demonstration, machine learning,

autonomous agents, AI-based animation.

151

www.manaraa.com

S
(a) (b)

S
(c) (d)

b3

b1
b2

b2(i, i+Klength)

b4

b1(j, j+Klength)

b3(u, u+Klength)

Figure 7.1: Overview of our approach. (a) A human interactively demonstrates the target

behavior for an autonomous virtual character. (b) These demonstrations are recorded as a

library of action sequences, or behavior trajectories. (c) At run-time, segments of the be-

havior trajectories are combined into novel behaviors for the character. Example characters

are shown in (d).

7.1 Introduction

The use of autonomous virtual characters is becoming increasingly pervasive. This

is because, in complex or interactive virtual environments, the explicit behavior of virtual

characters may be too difficult or impossible to define a priori. Common applications

of these self-animating autonomous characters include training simulators, film, computer

games, virtual tutors, etc.

Despite the success of autonomous characters in certain types of virtual environments,

some important arguments have been brought against current techniques (see [Funge et al.

1999; Isla and Blumberg 2002]), such as:

1. Behavioral models can often be very difficult and time-consuming to design and

program.

2. Character decision making is entirely synthetic, thereby limiting its realism.

In this paper we present a novel technique for behavioral modeling. Our technique ad-

dresses the two problems listed above by a combination of programming-by-demonstration

and data-driven behavior synthesis. In short, demonstrated human behavior is recorded in

an unmodified form, and then is segmented and combined in novel sequences that are per-

formed by the character. Thus the virtual character can engage in innovative behaviors but

is constrained to sub-sequences of real human behavior.

152

www.manaraa.com

Our technique operates in two modes: training and autonomous behavior. In the

training mode, the human user instructs the character by controlling it (e.g., with a joystick)

during an interactive session where the character and its virtual environment are visualized

in real-time for the demonstrator. Each demonstrated behavior is stored as a behavior

trajectory: an ordered sequence of actions. After being instructed, a character has a library

of one or more behavior trajectories.

Later, in the autonomous behavior mode, the character innovates behavior to perform

through data-driven synthesis. This is done by concatenating segments of behavior trajec-

tories. The choice of behavior trajectory segments is guided by simulations that predict

the utility of performing each given segment. These simulations are accurate and simple

to perform because we leverage the existing virtual environment. To keep the number of

simulations tractable, the behavior trajectory segments are clustered so that they can be

hierarchically searched.

Our technique is useful because a character can engage in a nearly endless variety of

behaviors but is constrained to perform action sub-sequences that have been demonstrated

by a human. Thus the character’s behavior appears natural and can be easily programmed

through demonstration by a non-technical user. Because synthesis is based on simulations,

it is unlikely that the character’s behavior will suffer from critical generalization errors. We

verify our technique with empirical findings and a video, demonstrating that it is robust,

tractable, general, and easy to use.

We begin by surveying related work. We then present our technique in detail. Af-

terwards, we present experimental results from applying the technique to a number of test

beds. We then discuss the technique and examine its strengths/weaknesses, usefulness, and

our empirical findings.

153

www.manaraa.com

7.2 Background and Related Work

Our technique was inspired by work in data-driven motion synthesis, e.g., [Arikan

et al. 2003; Gleicher et al. 2003; Safonova et al. 2004], etc. In some of these methods, mo-

tion capture data is segmented and combined in novel sequences to create new motions (as-

suming motion is deterministic). These “cut-and-paste” techniques have proven extremely

useful for creating motions that are highly realistic, because they leverage actual human

motion. This led us to conjecture that data-driven synthesis could be performed at a con-

ceptually higher level: decision making. Unfortunately, simple cut-and-paste of decision-

making sequences is not plausible in a complex environment due to non-deterministic state

transitions and errors from generalizing action sequences over the state space. To overcome

these problems we use simulations to guide the character’s choices in data-driven synthesis.

Another source of inspiration for our technique comes from findings in neuroscience

and ethology, such as the notion that some animals use a small set of fundamental be-

haviors to create complex behaviors [Bizzi et al. 1995]. This is a biological parallel of

the concept of behavior-based robotics [Arkin 1998]. Our technique can be classified as

a behavior-based method. We also have validation for our approach from the perspective

that the character imitates demonstrated behavior (with some innovation). Many cognitive

scientists postulate that imitation is one of the primary learning methods of humans [Byrne

and Russon 1998].

A number of noteworthy architectures for behavioral animation of autonomous char-

acters have been proposed. These methods for independent characters include [Funge et al.

1999; Badler et al. 1999; Blumberg et al. 2002; Egges et al. 2004; Dinerstein and Eg-

bert 2005]. Methods for crowds and flocks include [Reynolds 1987; Musse and Thalmann

2001; Metoyer and Hodgins 2003; Anderson et al. 2003; Sung et al. 2004]. In these tech-

niques, characters behave autonomously by making decisions through a behavioral model:

an executable model defining a character’s thought process1. While these techniques have

1A behavioral model can either make decisions in a reactive or cognitive (i.e., deliberative) manner [Funge

et al. 1999]. For simplicity, and without loss of generality, we simply refer to all these varieties as behavioral

models.

154

www.manaraa.com

produced impressive results, behavioral model programming has remained a difficult, tech-

nical endeavor. Moreover, it has proven difficult to create characters that exhibit natural or

stylized decision making.

One approach taken to simplifying the programming of behavioral models (problem

#1 in Section 7.1) is the creation of special-purpose languages. Some examples, which

are specially designed for virtual agents, include [Funge et al. 1999; Devillers et al. 2002].

Special-purpose languages have enjoyed some success, but are often limited to certain types

of characters and/or cannot be employed by non-programmers. Another approach has been

offline learning, e.g., [Dinerstein et al. 2004b; Dinerstein and Egbert 2004]. In these tech-

niques, the virtual agent is given a fitness function and then automatically constructs a

behavioral model. However, because the user’s control over the learned model is merely a

fitness function, it is difficult to achieve stylized or specific behavior.

To provide a more intuitive agent programming interface, many robotics researchers

have turned to programming by demonstration [Mataric 2000]. Two main approaches have

been examined: learning policies [Kasper et al. 2001; Dinerstein et al. 2004a], and learning

task structure or sub-behavior pre/post conditions [van Lent and Laird 2001; Nicolescu

2003]. While these techniques are interesting and powerful, they do not solve problem #2

because they construct models from the demonstrated behavior — these models produce

entirely synthetic decision making. For example, the policy-construction techniques blend

the demonstrated behavior into a deterministic state → action mapping. Thus features of

human behavior such as non-determinism, non-Markovian action selection, etc, are lost.

Also, these techniques require a large amount of explicit programming, lack scalability,

and can only produce shallow decision making. The approach we take in this paper is

unique and powerful with respect to the programming-by-demonstration literature.

Little research has been performed on designing virtual agents to make decisions in

a human-like manner (problem #2 in Section 7.1). Indeed, most behavioral animation and

agent research has focused on simply achieving effective decision making versus stylized

decision making. However, for a virtual character to appear convincing, it must behave

as its real-world equivalent would behave. In the case of a synthetic human, the behavior

should be stylized to the point where it matches the unique personality and conduct of the

155

www.manaraa.com

real-world human the character is meant to represent. One attempt to solve problem #2

was the use of personality parameters in MASSIVE for crowd animations in the Lord of

the Rings films [Duncan 2002]. However, while these parameters allow each character to

be unique, it is not entirely clear how to create specific personalities, and the characters’

decision making is entirely synthetic.

Our technique is also related to previous work in pre-computation and approximation

of expensive state transition and control functions, e.g., [Grzeszczuk et al. 1998; Reissell

and Pai 2001; James and Fatahalian 2003]. Most of these methods interpolate discrete

samples through some form of machine learning, but this can result in generalization er-

rors. Alternatively, data-driven approaches such as tabulation can be taken. For example,

[James and Fatahalian 2003] approximates physical systems using n distinct state space

paths. Because the state transitions are deterministic, and the current system state can be

forced into a known state, these paths are sufficient to represent n discrete system activ-

ities. However, because our problem domain of interest is complex virtual environments

with one or more agents (human and synthetic), the environment’s state transitions will be

non-deterministic and the current state cannot be forcibly changed. Moreover, in a com-

plex environment, it is unlikely that a demonstrator can provide enough information for the

character to perform all necessary behaviors without some form of synthesis. Thus we per-

form data-driven behavior synthesis using simulations to ensure that we achieve sufficient

behavior while avoiding generalization errors.

Contribution: In this paper we present a novel character decision making technique that

performs data-driven behavior synthesis using data gathered through an intuitive programming-

by-demonstration interface. Our technique produces stylized and natural virtual character

behavior that can be effectively and quickly demonstrated by non-technical users. We pro-

vide empirical evidence that our approach is robust, scales well, and is less computationally

expensive than many traditional behavioral animation techniques. Our method is applica-

ble to all kinds of virtual characters whose target behavior can be demonstrated using a

broad range of input devices.

With respect to previous work, some of our specific contributions include: (1) our

156

www.manaraa.com

aaa An action. aaa ∈ A, A ⊆ R
m.

b A behavior trajectory (ordered sequence of actions).

B Set of demonstrated behavior trajectories.

Q Set of behavior trajectory segments.

f Fitness function.

Table 7.1: Summary of notation.

novel data-driven cut-and-paste approach to decision making; and (2) leveraging robotic

programming-by-demonstration concepts for character behavioral modeling.

7.3 Overview and Formulation

Our data-driven technique contains two inter-related methods: programming by demon-

stration and cut-and-paste behavior synthesis. We begin by providing a general overview

and an exposition on the concepts shared between these two methods. Our formal notation

is summarized in Table 7.1.

The workflow of our technique is summarized in Figure 7.1. It involves the following

stages:

1. Training:

• A programmer integrates the behavior trajectory system into a new, “brainless”

virtual character.

• A human demonstrates behavior trajectories.

• The demonstrator tests and edits the behavior trajectories.

2. Autonomous Behavior:

• The behavior trajectories are segmented and the segments clustered.

• The segment selection algorithm chooses the behavior trajectory segment to

perform next.

• The virtual character iteratively performs the actions in the behavior trajectory

segments that are selected.

157

www.manaraa.com

Behavior model

Perception
 Motor
control

 Virtual
environment

st a

Figure 7.2: Autonomous virtual character control loop.

Our technique is designed to provide character decision making. Note that an au-

tonomous virtual character is a synthetic agent and traditionally is composed of several

modules as shown in Figure 7.2. We are interested in the behavioral model, where action

selection takes place. We assume that motor control, perception, and other agent needs

are carried out competently by existing techniques (e.g., [Isla et al. 2001]). For example,

motor control for autonomous characters has traditionally been performed through motion

capture data (where each action a character may perform maps to an explicit motion).

States, actions, and behavior trajectories: A state, sss, is a configuration of the virtual

environment. An action, aaa, is a primitive activity that a character may perform. The state

space is denoted S and the character’s action space A. The virtual environment can be

formally represented as a non-deterministic relation:

ssst+1 = E(ssst ,aaat). (7.1)

In other words, at each discrete time step t, the character performs an action aaat that causes

the environment to transition non-deterministically to state ssst+1. The environment can

include any number of agents: e.g., E(ssst ,aaa
1
t , ...,aaa

p
t) for p characters. The specific format of

sss and aaa is not critical, but we use aaa∈R
m so that we can use the Euclidean metric to compare

actions. The human’s demonstration action space is identical to the synthetic character’s

action space because the demonstrator controls the character during training.

We record each demonstrated behavior as a behavior trajectory, denoted bi (see Fig-

ure 7.3). A behavior trajectory is an ordered sequence of actions that a virtual character

may perform:

b = 〈aaa1, aaa2, ..., aaal〉. (7.2)

158

www.manaraa.com

S

bi
s1

s2

s3s4

a1

a2

a3
a4

Figure 7.3: Behavior trajectory. A demonstrated sequence of actions. The observed state

transitions do not generalize easily and are not guaranteed due to non-determinism, so they

are ignored.

Data-driven programming and behavior: The demonstrated behavior is observed and

recorded according to a fixed time step ∆t (e.g., 15 Hz). At each discrete step t, the demon-

strator’s current action aaat is appended to the end of the behavior trajectory. Later, during

autonomous behavior, the character performs the action sequences using the same ∆t.

The set of behavior trajectories demonstrated for the character is denoted B = {bi}.

Due to practical constraints on the demonstrator, B is likely to be a small subset of all

possible behavior trajectories. The character’s current location in a behavior trajectory i

(i.e., the next action to perform) is denoted bi(j), where j ∈ N and monotonically increases

with each action performed.

The choice of how to cut-and-paste behavior trajectory segments to create an effective

novel behavior can be framed as an optimization problem. To make this problem tractable,

we segment the trajectories into equal-sized segments of length Klength. The set of segments

is Q = {bi(j, j+Klength) | ∀bi ∈ B, 1 ≤ j ≤ |bi|−Klength}. In other words, Q contains every

contiguous sub-sequence of length Klength of the behavior trajectories in B. We also cluster

these segments so that they can be searched hierarchically (see Section 7.5.1).

The behavior trajectory segment selection algorithm greedily determines which seg-

ment is to be performed next by the character. Formally:

bi(j, j +Klength) = Select(ssst), (7.3)

where the input is the current state of the environment and the output is the behavior tra-

jectory segment for the character to perform next. In alternative notation, Select : S → Q.

The goal is to select segments such that the character’s behavior bc is optimal with

159

www.manaraa.com

regards to its total finite-horizon fitness:

bc = arg max
bi(j, j+Klength)∈Q

(

Klength

∑
u=1

f (s̃ssu)

)

, (7.4)

where bi(j, j +Klength) is the sequence of actions tested, s̃ss1...s̃ssKlength
are the states resulting

from performing these actions, and f : S → R is the fitness function.

7.4 Training

Under our technique, training must occur before a character can behave autonomously.

As described in Section 7.3, the training mode is composed of three stages: (1) integration

of the behavior trajectory system, (2) demonstration of behavior trajectories, and (3) testing

and editing of the recorded behavior trajectories. The integration stage must be performed

by a programmer. The latter two stages can be performed by any user. Proper training

results in a stylized, compelling virtual character that chooses actions through our behavior

trajectory technique.

7.4.1 Integration

Integration is a necessary precursor to using our behavior trajectory technique. This

involves a programmer plugging our technique into a virtual character, thereby providing

it with decision-making skills. Conceptually, this is not much different than developing

autonomous characters under any other behavioral animation technique. Our technique is

designed to be highly reusable and portable so that it can be easily applied to most charac-

ters. The programmer need only supply: (1) a fitness function f , and (2) a distance metric

for the character’s action space A. The fitness function implicitly defines the character’s

goal and therefore is unique to each given character and goal. We require a distance met-

ric to compare actions so that behavior trajectory segments can be clustered. All other

components of our technique are generally applicable and need not be modified. The ex-

isting virtual environment is leveraged for simulations when selecting behavior trajectory

segments to perform.

160

www.manaraa.com

The fitness function f is solely responsible for defining the target behavior of the

character (see Equation 7.4). It is through f that our technique determines what behavior

trajectory segment should be performed next. Thus f guides the character’s data-driven

behavior synthesis. f must represent for each given state an approximate usefulness of

the agent’s achieving that state (fitness = f (ssst)). Fortunately, fitness functions are well-

established tools in the literature [Russell and Norvig 2003]. Interpolation of fitness labels

and potential fields are particularly interesting methods because a fitness function can be

generated semi-automatically.

An appropriate distance metric for the character’s action space is necessary for us

to be able to cluster behavior trajectory segments. This clustering is useful for allowing

us to perform rapid searches, thereby speeding up behavior synthesis. In all of our case

studies, we utilize the Euclidean metric to compute action-action comparisons. This is

straightforward due to our use of real-vector-valued action spaces (see Section 7.3). Thus:

d(aaai,aaa j) = ‖aaai −aaa j‖w, (7.5)

where aaai,aaa j ∈ R
m, and w is an optional weighting matrix. The only requirement we must

fulfill is that the action space A be defined such that similar actions are located near each

other in A. Of course, an alternative action space formulation and/or distance metric can be

used if desired.

7.4.2 Demonstration

Once our behavior trajectory technique has been integrated (as detailed in §7.4.1),

the virtual character can be instructed by a human demonstrator. The programming-by-

demonstration interface operates as follows (see Figure 7.1 a-b). The character and its

world are visualized interactively for the demonstrator. Thus the demonstrator is contin-

uously being updated with the current state of the environment. The human user demon-

strates the target behavior for the character by interactively controlling it using one or more

input devices. Thus the sequence of actions the demonstrator chose for the character is

recorded in order. Each demonstration session is recorded as a separate behavior trajectory

bi, and stored in B. The number of behavior trajectories, |B|, is not important — we can

161

www.manaraa.com

extract the same number of behavior trajectory segments from one long trajectory as sev-

eral short ones. The only reason for not using a single long behavior trajectory is that the

logical sequence of actions will be broken when a session change occurs.

Any human input device is pertinent for use in training virtual characters. We have

successfully used joysticks, keyboards, and mice. Other possibilities include motion cap-

ture systems, etc. All that is necessary is for the input device to map onto the character’s

action space.

It is likely intractable (in both storage and the demonstrator’s time) to require that the

demonstrated behavior trajectories densely sample the entire space of possible behaviors.

However, this is not necessary for our technique since behavior trajectory segments are

combined to synthesize pertinent behavior.

Our programming-by-demonstration interface is intuitive, and can be used effectively

by non-technical users to quickly create compelling character behavior (as we show in

the experimental results section). One limitation is that the demonstrator must be able to

control the character in real-time. Therefore, the dimensionality of the action space must

be reasonably small.

7.4.3 Testing and Editing

Once demonstration of behavior trajectories is complete, the set of trajectories B and

the fitness function f can be tested. This is done in two ways: first, by directly playing

back the recorded behavior trajectories; secondly, by observing the character as it exercises

autonomous behavior in the virtual environment. If it is clear that a portion of a behavior

trajectory bi(j, j + ζ) represents undesirable behavior, that portion is marked and deleted.

The first part of the trajectory (< j) is retained, and the remainder of the trajectory (> j+ζ)

becomes a new trajectory. If the character’s autonomous behavior is incorrect, it is likely

that either f is incorrect or that B contains an insufficient amount of data. Corrections in f

can be made by the programmer, and any user can add more behavior trajectories.

162

www.manaraa.com

S

Undesirable

?
st

S

st

s1
a

s2

s3
?

Figure 7.4: (Left) Generalization of behavior is not trivial, and can lead to error. (Right)

The virtual environment is likely to be non-deterministic, especially if it includes multiple

characters and/or a human user.

7.5 Autonomous Behavior

Our approach to data-driven autonomous behavior is motivated by several issues,

some of which are shown in Figure 7.4. Given the black box origin of the behavior trajec-

tories, the target behavior is generally complex and generalization of the behavior data is

problematic. Fundamental complications include insufficient data, complex environments,

and non-determinism in the environments and human users/secondary characters. As a

result, the character could never reactively use this behavior data without risk of inappro-

priate behavior. To ensure intelligent and appropriate decision making we have designed

our technique to simulate the outcome of its choices.

The virtual character does not merely play back “canned” behaviors. Rather, it per-

forms innovative behaviors, unique to its current situation ssst , which are created by con-

catenating segments of behavior trajectories. Behavior synthesis can be framed as an opti-

mization problem. This optimization problem is difficult because we wish to achieve real-

time performance (for interactive environments). Our behavior trajectory construct can

be considered an optimized, stylized search space representation that is defined through

programming-by-demonstration.

7.5.1 Behavior Synthesis

Synthesizing behavior by concatenating behavior trajectory segments is an optimiza-

tion problem. Specifically, it is a Markov Decision Process (MDP). As shown in Equa-

tion 7.4, only the future is taken into account in determining which segment is optimal

163

www.manaraa.com

{ 1

2

3

{
{

bi

Figure 7.5: Example of behavior trajectory segmentation. Three segments, each of length

three.

given the current state. Ideally, we should solve this optimization problem through dynamic

programming to construct a sequence of behavior trajectory segments that maximizes long-

term fitness. However, this is implausible because we perform an internal simulation to

measure the fitness of each candidate segment. Thus we have opted for a greedy approach,

where only the next behavior trajectory segment is selected. This reduces the problem to

O(n), where n is the number of segments to consider.

Even with our greedy approach to optimization, our technique will likely not execute

in real-time if there are prohibitively many behavior trajectory segments to test (i.e., |Q|
is large). A naı̈ve solution to this challenge is to leverage state information to suggest the

region of the state space where each segment will likely be useful, thereby limiting the

number of segments to simulate. However, as discussed throughout this paper, the virtual

environment is complex and non-deterministic. Thus it would be difficult or improbable

to effectively generalize states and thereby gain context. Instead, we hierarchically cluster

the behavior trajectory segments. Thus the segments can be searched in O(log n) time.

While this does introduce the possibility of finding sub-optimal segments, we show in

the empirical results section that our greedy-hierarchical algorithm produces compelling

results and is very fast.

Segmentation and Clustering

We segment the trajectories into equal-sized segments of length Klength (see Fig. 7.5).

Specifically, there is a segment for every point bi(j) that is followed by at least Klength

actions in the given trajectory. Thus these segments mostly overlap. The purpose of this is

164

www.manaraa.com

to make sure that every contiguous sub-sequence of length Klength in B is available for the

character to perform. All segments are placed in a set denoted Q.

To allow the segments to be searched hierarchically, we create a hierarchical cluster-

ing. Specifically, a β -ary tree of clusters is created, where Knclust = β is the number of

clusters created at each iteration of clustering. The tree is created recursively (as shown

in pseudo-code in Figure 7.6). The root of the tree is a single cluster of the entire set of

segments (Q). We begin by clustering the root cluster into Knclust sub-clusters. Each seg-

ment in Q belongs to one and only one of these sub-clusters. These sub-clusters are the

child nodes of the root in the tree. Next, any sub-cluster than contains more than Knclust

children is recursively clustered. At each recursive iteration, the new sub-clusters are set as

the children of the parent cluster.

Hierarchical clustering is performed only once offline after training is complete. There-

after, the tree of clusters can be used without change to select segments for the character to

perform (as detailed in the next section).

We create clusters using the k-means clustering algorithm [Duda et al. 2000]. The

mean of a cluster is the average of each action (1 through Klength) in the segments in the

cluster: 〈āaa1, ...,āaaKlength
〉, where bar denotes average. The difference between two segments

is computed as:

difference = ∑
Klength

i=1

(

‖aaa1,i −aaa2,i‖ ·0.95i−1
)

, (7.6)

where ‖ · ‖ is the Euclidean metric. The term “0.95i−1” discounts each action such that

those early on have the greatest weight. The constant 0.95 was set empirically.

Note that k-means is an iterative algorithm that is randomly seeded, and may converge

to a local minimum. To ensure that we get a good clustering, we recompute the cluster tree

multiple times and keep the tree that performs best in the virtual environment (i.e., has the

highest average fitness).

Behavior Trajectory Segment Selection

Our segment selection algorithm operates as follows (pseudo-code is given in Fig-

ure 7.7). A beam search of the cluster tree is performed until the first leaf is found. When

a node is traversed, it is expanded by testing all of the Knclust clusters (nodes) that descend

165

www.manaraa.com

HCluster(R) { // R is a node in tree (cluster) to hierarchically cluster

Create Knclust clusters of the segments in R

Set new clusters as children of R in tree

For every new cluster Ci ...

if (Ci contains ≥ Knclust segments)

Call HCluster(Ci)

}
Set root of tree as Q

HCluster(Q)

Figure 7.6: Pseudo-code of the hierarchical clustering algorithm.

from it. Specifically, each cluster’s prototype member is simulated to measure its fitness

given the current state ssst . The prototype member of a cluster is the segment that is closest

to the cluster mean according to Equation 7.6. The fitness of the segment is computed using

Equation 7.4. The cluster whose prototype member has the highest fitness is the winner,

and it is the node that is traversed next in the tree. Once a leaf node is reached, all segments

in that cluster are simulated. These segments are then ranked by fitness and the character

probabilistically selects one to perform, where p = 1/(2i) for i = rank.

The character performs the actions in the selected segment in order, from aaa1 to aaaKlength
.

We periodically (once every Kveri f y steps, where 1 < Kveri f y < Klength) determine whether

the currently selected behavior trajectory segment is still valid. This is important because,

due to error in the simulations and/or non-determinism, the remainder of a chosen segment

may prove detrimental for the character to perform. If the current segment is deemed in-

valid, our algorithm immediately selects a new segment. Thus the character can respond

robustly to surprising events, but because Kveri f y > 1 segments are not abandoned prema-

turely so “thrashing” is avoided.

Two distinct factors assure that the demonstrator’s style of behavior will be faithfully

reproduced by the character. First, only actions demonstrated by the human trainer exist

in B and Q, and therefore the character is limited to the subset of the action space demon-

strated. Second, the character must perform contiguous sequences of actions demonstrated

by the trainer. The larger the values of Klength and Kveri f y, the more constrained the charac-

ter will be to the trainer’s behavior.

166

www.manaraa.com

Select(ssst , N) { // ssst and N are the current state and node in tree.

best = NULL

For each child node Ci of N ...

Simulate the prototype member of Ci // Prototype is member closest to mean.

if (Ci prototype more fit than best) // Fitness measured by Eq. 7.4.

best = Ci

if (best is a leaf node)

Simulate all segments in best

Rank segments by fitness and probabilistically select one

Return selected segment

else return Select(ssst , best)

}
Character {

For every discrete time step t ...

if (a new segment needs to be selected)

Perceive current state ssst

Segment to perform = Select(ssst , root)

Perform next action in current behavior trajectory segment

}

Figure 7.7: Pseudo-code of the behavior trajectory segment selection algorithm and the

character control loop that uses it.

In our implementation, transitions between segments are performed by concatenat-

ing action sequences. In other words, no blending of actions is performed. Because our

technique can form many different behaviors from the set of segments Q, and selection of

segments is probabilistic, our technique produces rich and varied non-deterministic char-

acter behavior (as shown in Section 7.7 and the video available from http://rivit.cs.

byu.edu/a3dg/publications.php).

7.5.2 Running Simulations

As discussed previously, our technique uses simulations to select segments (see Fig.

7.8). This is important because, as shown in Figure 7.4, generalization of behavior data is

not trivial. Simulation allows us to choose a segment with high confidence in the expected

outcome. We leverage the existing virtual environment to run internal simulations. These

simulations are transparent to the user/observer. Thus, the environment is not visualized

graphically, and the actual state of the environment ssst does not change.

167

www.manaraa.com

S

st

b1(u, u+K)

b7(i, i+K)

b3(v, v+K)

b6...

Figure 7.8: The fitness of a candidate segment is computed through simulation, starting at

the current state. No consideration is given for following segments.

We run a single simulation for each segment to test. Although averaging the fitness of

multiple simulations may reduce variance due to non-determinism in the environment, this

has not proven necessary in practice.

Any secondary characters in the environment may be included in the simulations to

determine their affect on the fitness of each candidate segment. To do this, we simply have

these characters make decisions based on the simulated state. To achieve faster results, we

can have them compute fast heuristic decisions or simply assume their actions. It can also

be useful to only consider those secondary characters that will most likely have a profound

influence on the fitness of a given segment. For a human user that is interacting with the

character (e.g., through an avatar), her actions can be predicted through one of a number of

existing agent modeling techniques, e.g., [Laird 2001; Dinerstein and Egbert 2005].

7.5.3 Parameters

We utilize three parameters in our technique: Klength, Kveri f y, and Knclust . Each pa-

rameter is set to a positive integer value. So far, we have only discussed these parameters

in tandem with the presentation of our technique. We now define these parameters:

• Klength : Length of all behavior trajectory segments. The longer the segments, the

more the character is constrained to the demonstrator’s behavior, and vice versa. The

default setting is Klength = (1.5 seconds)/∆t, where ∆t is the fixed time step between

the character’s actions.

• Kveri f y : Behavior trajectory segment verification rate. Once every Kveri f y discrete

time steps (i.e., actions performed), the remainder of the current segment is simulated

168

www.manaraa.com

to verify that it is still valid. Specifically, if the average fitness of the remaining

actions is poor (e.g., less than zero), then a new segment is immediately selected.

Thus unexpected events can be handled robustly. The default is Kveri f y = Klength / 5.

• Knclust : Number of clusters. This parameter defines the number of child clusters

created by our hierarchical clustering every time a cluster is divided. Thus this is the

branching factor of our cluster tree. This parameter tunes a quality/CPU utilization

trade-off. The default setting is Knclust = 25.

These are all the parameters of our technique. This number of parameters (three) is

quite reasonable for a technique of this complexity. We discovered the given default values

through empirical evaluation. Our studies indicate that the character behavior is largely

insensitive to the parameters, and the parameters usually do not need to be modified from

their default values (see Section 7.7 for details).

Klength and Kveri f y have very little effect on the CPU utilization of our technique. This

is because we only have to simulate one partial segment to perform verification, and the

length of the segments is counter-balanced by how often a new segment must be selected.

However, Knclust has a notable effect on CPU utilization because this is the branching factor

of our cluster tree. A higher value of Knclust provides more accurate segment selection but

at the cost of more CPU cycles.

7.6 Using Our Technique in Practice

Modularity: In our technique, the character’s goal is implicitly defined by the fitness

function f . Therefore, a change in goal at run-time simply requires switching f . Most

virtual characters have a small number of candidate goals — thus this set of goals can be

represented by a set of fitness functions { f1, ..., fe}. It may be useful to construct a set of

behavior trajectories for each fitness function {〈 f1,B1〉, ...,〈 fe,Be〉}. This is because useful

behavior trajectories may be unique for each goal.

Temporal antialiasing: We have found that penalizing temporal aliasing in the segment

selection algorithm can be aesthetically useful when actions are of short duration (i.e.,

169

www.manaraa.com

∆t is small). We do this by computing the Euclidean distance between the last action in

the previous segment and the first action in the candidate segment: d = ‖aaa1,Klength
−aaa2,1‖.

We then scale the fitness of the candidate segment: f (bi(j, j + Klength)) / (1 + d). Thus,

segments that match well with the previous segment are favored for selection.

Online learning: In many virtual environments, a human user will interact with the en-

vironment and characters living therein. This is the case with many training simulators,

computer games, etc. We can non-obtrusively leverage these user interactions to gather

additional behavior trajectories online. We do this as follows. First, the virtual character

infers the goal of the human user. This is usually trivial in virtual environments, because

the environment often constrains or assigns the user’s goal (for more discussion on this

topic see [Blumberg et al. 2002; Dinerstein and Egbert 2005]). If the inferred goal is a goal

that the character may engage in, then the user’s current behavior may be of interest. The

character observes and records the user’s behavior as a behavior trajectory. Finally, if the

user achieves her goal, the new behavior trajectory is segmented and added to the cluster

tree (either by re-clustering or by adding each segment to the best-fitting leaf node cluster).

Otherwise, the trajectory is deemed ineffectual and is discarded.

Online behavior trajectory acquisition is interesting because it allows a character to

“steal” the user’s best tricks. Also, any important gaps in a character’s behavior repertoire

may be filled in.

Motion synthesis: Motion synthesis is often performed in an online fashion since the

motion needs of a character may not be known a priori. Unfortunately, highly flexible

cut-and-paste motion synthesis requires a notable amount of CPU time to perform. One

well-known technique, [Arikan et al. 2003], can be executed interactively but with high

CPU utilization.

An interesting aspect of our technique is that it provides a convenient platform upon

which to perform motion synthesis in an offline fashion. This follows from the fact that

the set of behavior trajectories is known and therefore motion can be synthesized for each

of these trajectories offline. In other words, we know a priori the sequences of actions

170

www.manaraa.com

the character may engage in, and thus can pre-compute and store the synthesized motion.

Because the number of behavior trajectories (|B|) is small, only a manageable amount of

storage is required. Motion synthesis between concatenated behavior trajectory segments

can then be performed online. Since concatenation only occurs occasionally, this selective

online synthesis is far less expensive than performing all synthesis online.

7.7 Experimental Results

We used four test beds in our experiments. We briefly summarize these test beds

(see Figure 7.9), followed by a discussion of our findings. Our results are summarized

in Tables 7.2–7.5 and Figures 7.9–7.14. See the accompanying video for demonstra-

tions of our technique in practice (available from http://rivit.cs.byu.edu/a3dg/

publications.php).

7.7.1 Summary of Test Beds

In all of our test beds, there is no explicit communication between the characters.

Also, the characters must rely on “visual” perceptions to ascertain the current state of the

virtual world ssst . Perception is performed by each character individually, and semi-realistic

sensory honesty is enforced (i.e., an character can’t see through the back of its head, etc).

Human input is provided through a joystick and/or keyboard.

Submarine Pilot: Our first test bed involves a virtual submarine pilot (see Figures 7.9

and 7.11). The pilot’s goal is to cross an unknown school of whales as quickly as possible

with no collisions. The fitness function is given in pseudo-code below. The maneuverability

of the sub is limited and the whales are placed close together, making this a challenging

problem. Actions are performed at a rate of ∆t = 1/15 second. The action space A ⊂ R
2

is composed of a continuous range of changes in the sub’s orientation (∆θ ,∆φ), where

θ ,φ ∈ [−π/2,π/2] and θ is yaw and φ is pitch. Straight forward motion (directly crossing

the school) corresponds to an orientation of (θ = 0,φ = 0). The fitness function uses

the following state information: (θ ,φ) is the sub’s current orientation and (∆x,∆y,∆z) is

171

www.manaraa.com

Figure 7.9: Summary of our test beds. From top-left to bottom-right, submarine pilot,

predator & prey, crowd behavior, and capture the flag.

the translation-invariant separation between the sub and the closest whale. The default

parameters are used.

f sub pilot(θ , φ , ∆x, ∆y, ∆z) {

const float WHALE SIZE = 1.0;

float fitness = 2π − (|θ |+ |φ |); /* Zero angle is straight forward */

if (
√

∆x2 +∆y2 +∆z2 < WHALE SIZE)

fitness = fitness − 1000.0; /* Submarine has hit a whale. */

return (fitness);

}

172

www.manaraa.com

1%

5%

9%

13%

17%

90 Sec
1%

5%

9%

13%

17%

90 Sec

Figure 7.10: Average online CPU usage by our submarine pilot and pig characters on a 3

GHz processor. Mean CPU load is ∼4.2%. In comparison, A*-based deliberative decision

making utilized ∼17.9% of the CPU. We achieved similar results with our other characters.

Predator & Prey: Our second test bed depicts a predator-prey scenario, involving a syn-

thetic dog and pig (see Figures 7.9 and 7.12). The dog is controlled by a traditional cogni-

tive model, while the pig is controlled by our technique. The dog’s goal is to catch the pig

as quickly as possible. The pig’s goal is to slip past the dog and hide in the forest located

at the top of the environment.

Character motor control is performed through skeletal animation, based on a library

of motion capture data. Specifically, there is a motion capture clip associated with each

action a character may perform. These clips are blended together when necessary (us-

ing quaternion interpolation) to avoid jittering or discontinuities in the motion. A fixed

decision-making time step of ∆t = 1/15 second is used (once per animation frame). The

action space A ⊂ R
2 is composed of a continuous range of 2D acceleration vectors, which

represent the change in running velocity of a character.

The pig’s fitness function is shown in pseudo-code below. The translation-invariant

separation between the pig and the closest dog is (∆x,∆y). The default parameters are used.

f pig(∆x, ∆y) {

const float DOG SIZE = 0.4;

float fitness = 0.0;

if (
√

∆x2 +∆y2 < DOG SIZE)

173

www.manaraa.com

fitness = fitness − 1000.0; /* Pig can be caught. */

if (∆y > DOG SIZE)

fitness = fitness + 10.0; /* Pig has passed dog, can escape. */

return (fitness);

}

Crowd behavior: This test bed involves crowds of synthetic humans, situated in a virtual

museum (see Figures 7.9 and 7.13). Each character’s goal is to move through the museum,

observing the art without bumping into static obstacles or other characters. Motor control

is performed through skeletal animation, based on a library of motion capture data. The

characters have deformable skin and clothing. The decision-making time step is ∆t = 1/4

second. The action space is composed of two components: the direction to walk or look,

and the specific motion to perform while walking/looking. The default parameter settings

are used.

In each experiment there are 5 or more characters. Each character is independent and

fully autonomous. To allow for timely training, only one or two sets of behavior trajectories

are demonstrated — each character uses one of these sets, sharing it with other characters.

The demonstrations are performed in an empty environment, and provide the characters

with basic navigation maneuvers and art-gazing behaviors.

Because there are several characters in a confined space, collision avoidance requires

that the motion of neighboring characters be considered during simulation. To keep these

simulations tractable, each character considers only her two nearest neighbors and assumes

that her neighbors will merely continue along their current 2D motion vectors. This simple

prediction scheme has proven sufficient in this case study.

Capture the flag (CTF): This case study is based on a well-known research test bed

called Gamebots [Kaminka et al. 2002]. This test bed modifies the popular computer game

Unreal Tournament 2003, allowing a programmer to replace the built-in behavioral model.

The object of team #1 is to protect the flag, while team #2 seeks to capture it. The players

are armed with “tag guns”; once a player is tagged, he is out for a period of time. Each

174

www.manaraa.com

Dem. time Memory |B| |Q|
Sub Pilot 1 min 24 KB 3 900

Pred. & Prey 2 min 41 KB 8 1700

Crowd 1 min 9 KB 1 300

Capture the Flag 7 min 5 KB 6 80

Table 7.2: Average programming-by-demonstration statistics for successful character be-

havior in our case studies. |B| is the number of behavior trajectories and |Q| is the number

of trajectory segments.

Human A* |Q| = 1000 |Q| = 3000

Sub time (min) .58 .53 .62 .57

Sub close calls 5 0 2 1

Pig escapes 80% 81% 79% 81%

Table 7.3: Average effectiveness of our data-driven technique compared to the demon-

strator and a traditional decision making technique (A*). A* may produce slightly more

effective behavior than our technique because it is not constrained to natural behavior —

but it is less realistic, non-stylized, and requires more CPU time. Sub time is the time taken

to cross the school of whales. Sub close calls is the number of times the submarine nearly

crashed. Pig escapes is the percentages of situations where the pig escaped the dog.

team has 5 players, each of which is either an autonomous character or user avatar. A slide

show of this case study is given in Figure 7.14.

We have modified the Gamebots test bed so that, rather than overriding the characters’

standard behavioral model, we simply select the category of behavior that the character

will engage in: e.g., guard the flag, approach other team’s flag, hold position, etc. We

used a decision-making time step of ∆t = 5 seconds. This high-level approach to control

is interesting, as notable success has been achieved in this genre of computer game by

selecting from a small set of specific behaviors [Laird 2001]. In a sense, our technique

is assigning tasks or behaviors rather than specific actions to the character. Because of

targeting such high-level decision making, we set the parameter Klength = 30 seconds. The

other two parameters are not modified.

175

www.manaraa.com

Instruction time Demonstration time

Author Not applicable ∼2 Min.

Artist ∼4 Min. ∼3.4 Min.

Game Player <1 Min. ∼1.8 Min.

Table 7.4: Results of an informal user case study, involving one of the authors, an artist,

and a computer game player. Results are time to instruct the user, followed by time for

user to demonstrate behavior (pred-prey test bed). Our programming-by-demonstration

interface has proven intuitive and applicable for non-technical users.

default Knclust / 2 Knclust ×2 Knclust ×4

default 34.5 s 36.5 sec 34.1 sec 33.9 sec

Klength / 2 32.2 s 33.0 sec 31.9 sec 31.8 sec

Klength ×2 38.5 s 38.9 sec 37.3 sec 36.5 sec

Kveri f y ×2 34.6 s 36.5 sec 34.2 sec 34.2 sec

Table 7.5: Average time to cross the school of whales using different parameters. All pa-

rameter values are default, some with modification. We achieved similar stable results

with our other test beds. As can be seen, our technique is largely insensitive to parame-

ter changes. Most variation is caused by modifying Klength, which controls the degree of

behavior synthesis allowed.

7.7.2 Findings

Programming by demonstration in our technique has empirically proven to take very

little time and storage (see Table 7.2). In fact, a small amount of behavior trajectory data is

sufficient to achieve interesting character behavior (see Table 7.3). To provide evidence that

our programming-by-demonstration interface is intuitive, we have performed an informal

user case study (see Table 7.4).

As detailed in Subsection 7.7.1, we usually use the default parameter settings in our

test beds. Our technique has empirically proven largely insensitive to parameter change

(see Table 7.5), though tuning the parameters may provide some improvement.

We have found that exploiting symmetry can reduce the number of demonstrations

that must be performed. In the submarine test bed, behavior trajectories can be mirrored

by inverting all the ∆θ and/or ∆φ actions. In our experiments, symmetry can reduce the

required number of behavior trajectories by up to an order of magnitude.

176

www.manaraa.com

Of course, our technique does not work well for all types of character decision mak-

ing. Behavior that must be extremely specific may not be plausible given our use of con-

tiguous segments of demonstrated behavior. For example, the game of chess is not a good

fit, because a single sub-optimal action can have disastrous results. Nevertheless, our tech-

nique has been shown empirically to work well for a broad range of virtual character be-

haviors.

As detailed in Table 7.3 and Figure 7.10, our technique quickly produces empirically

effective character behavior. Our technique also produces natural, realistic, and aestheti-

cally pleasing behavior as is demonstrated in the accompanying video. This is in contrast to

traditional behavioral models, which are time-consuming to program and produce entirely

synthetic decision making.

Our technique is faster than some traditional decision-making techniques, such as

deliberation through A* (see Figure 7.10). This is partly because, as discussed in Sec-

tion 7.5.1, our technique is O(log n) where n = |Q|. Thus our technique is quite scalable.

In comparison, most other deliberative techniques are O(|A|m) where m is the number of

steps to plan. The use of behavior trajectories provides us with a compact, effective search

space representation. The demonstrator provides the character with a small but effective

subset of all possible action sequences.

We have found that developing an autonomous virtual character with our technique

is significantly faster than the traditional approach where the behavioral model is imple-

mented by a programmer. This is because explicitly designing character AI is challenging.

In contrast, our technique automatically creates a behavioral model from brief demonstra-

tions.

7.8 Summary

We have presented a novel technique for virtual character decision making that per-

forms data-driven behavior synthesis using data gathered through an intuitive programming-

by-demonstration interface. Our technique produces stylized and natural virtual character

behavior that can be effectively and quickly demonstrated by non-technical users.

177

www.manaraa.com

Figure 7.11: Animation of the Submarine Pilot test bed.

A weakness of our approach is that it is more computationally expensive than most

reactive approaches to decision making. However, it can be argued that deliberative tech-

niques (like ours) can produce superior behavior [Funge et al. 1999]. Another weakness

is that our technique does not scale indefinitely (because it is O(log n)). Nevertheless, we

have shown that it is quite scalable. Finally, our technique is heuristic because we take

a greedy-hierarchical approach to selecting behavior trajectory segments. Thus optimal

decision making is not guaranteed.

We provide empirical evidence establishing the notable features of our approach, in-

cluding that it is robust, is effective in complex virtual environments, and is less compu-

tationally expensive than many traditional deliberative techniques. Our technique is appli-

cable to virtual characters whose target behavior: (1) can be demonstrated using an input

device; and (2) can be effectively created from segments of demonstrated behavior. While

our technique is not plausible for every virtual character, we have empirically shown that it

works well for a broad range of applications.

178

www.manaraa.com

Figure 7.12: Animation of the Predator & Prey test bed. The pig slips past the dog and

hides in the forest.

Figure 7.13: Slide show of the Crowd Behavior test bed. The synthetic humans inhabit a

virtual museum. They move about, examining the diverse pieces of art.

a b c

d e f

Figure 7.14: Animation of the Capture the Flag test bed. (a) Characters on team #1 are

represented with this model. Their flag is shown in the background in blue and white.

(b) Characters on the opposing team (#2) are represented with this model. (c–f) Team #2

attacks, tagging all defending characters on team #1 and capturing the flag.

179

www.manaraa.com

180

www.manaraa.com

Part V

Conclusion

In this part we conclude this dissertation. We also suggest several possible directions

for future work.

181

www.manaraa.com

182

www.manaraa.com

Chapter 8

Conclusion

Behavioral animation is an important topic that overlaps with diverse fields such as

computer graphics, artificial intelligence, multi-agent systems, and machine learning. Cur-

rent techniques suffer from three notable limitations, as discussed in the introduction of

this dissertation:

1. Cognitive models are very slow to execute, distinctly limiting their usefulness.

2. Interactive virtual characters cannot adapt on-line due to interaction with a human

user — their behavior is static.

3. There are no simplified techniques for creating behavioral models. Traditionally, a

model must be explicitly designed and programmed by a skilled developer.

We have presented several novel methods, rooted in machine learning, that overcome these

problems.

We now enumerate the key contributions made in this dissertation and discuss possible

directions for future work.

8.1 Contributions

• A formalization of the needs and requirements of machine learning in behavioral

animation. We have formalized several needs for machine learning in behavioral an-

imation and the requirements for a candidate solution to fulfill these needs. These

183

www.manaraa.com

needs are listed in Chapter 1 and are analyzed in Chapters 2 through 7. Requirements

of some of these needs include rapid learning and execution, robustness when learn-

ing from or about human behavior, etc. This formalization is important not only for

our work in this dissertation but also for future work as well.

• Empirical analysis of the advantages gained by applying machine learning in behav-

ioral animation. We empirically show that machine learning can provide significant

benefit to behavioral animation. This should help promote future work in this area.

• Rapid approximation of cognitive models. We have presented an original technique

for rapidly approximating cognitive models through regression. The function approx-

imation can be performed with one of many machine learning techniques, though we

have suggested either continuous k-nearest neighbor or the artificial neural network.

As we empirically show, our approximation scheme is effective and very fast. Thus

a cognitive model can be practical for use in an interactive setting.

• Simplified construction of behavioral/cognitive models through planning and approx-

imation. This method leverages our cognitive model approximation technique but

provides it with state-action pairs that are generated through planning. The planning

is guided by a user-supplied fitness function. Thus an unknown behavioral/cognitive

model can be learned in a matter of hours with limited user intervention—significantly

easier than programming an explicit behavioral/cognitive model. However, while this

technique is effective, it is difficult to achieve specific or stylized behavior. Thus we

have presented our techniques based on programming-by-demonstration for simpli-

fied construction of behavioral/cognitive models.

• Incremental action prediction. It is very difficult for a synthetic agent to adapt to the

behavior of a human because human behavior is non-deterministic, non-stationary,

etc. We present a novel technique that constructs a state → action model of the

observed behavior of a human user (or a synthetic agent). Through this model an

autonomous character can predict the future behavior of the user and thereby act

184

www.manaraa.com

more intelligently than it could without any knowledge of the future. This technique

is compelling because it is very fast.

• Multi-level learning for autonomous characters. This technique leverages our action

prediction method and other learning schemes to allow a character to adapt in a multi-

level fashion. Specifically, the character’s action selection, task selection, and goal

selection are all able to adapt such that the character can better interact with a unique

human user.

• Behavioral model creation through programming-by-demonstration. This technique

constructs a policy through generation of observed state-action pairs. Similar tech-

niques exist in the robotics/agents literature, but our method is unique in that it is ap-

plied specifically to behavioral animation. Also, our method contains a novel conflict

elimination algorithm that reduces undesirable behavior due to incorrect generaliza-

tion.

• Data-driven specification and synthesis of character behavior. Learning policies is

simple and fast, but policies are limited to shallow decision making. Moreover, re-

active generalization can result in incorrect behavior. We have presented a novel

technique that captures action sequences from observation of human demonstration.

Afterwards, disjoint segments of the action sequences are combined to form novel

behavior. This “cut and paste” approach is similar to current trends in motion syn-

thesis. Because we synthesize using real human behavior, the synthesized behavior

is likely to appear highly realistic.

8.2 Future Work

In the future, we would like to extend and compliment the research in this dissertation.

Below we list some notable and general directions we would like to pursue in the future.

For specific ideas of approaches to this future work, see the end of each chapter.

• Character adaptation that utilizes little or simple domain knowledge. Our online

character adaptation techniques (Chapters 4 and 5) are interesting and powerful but

185

www.manaraa.com

require significant domain knowledge. For example, action prediction requires that

a compact and effective state space be defined. This is not always plausible and

limits the scalability of our adaptation technique. An ideal solution to the adaptation

problem would require less domain knowledge or domain knowledge that is easier to

acquire.

• More scalable model approximation. Our model approximation techniques are dis-

tinctly limited with respect to scalability due to the need for compact state space for-

mulations. For example, some complex virtual environments may not be accurately

representable by a small set of features. It may be possible to partially alleviate this

limitation through feature discovery and selection but this remains a difficult research

problem. Alternatively, better scalability might be achieved through a different ap-

proach to model approximation.

• Alternative uses for machine learning in behavioral animation. In this dissertation,

we have identified and addressed three limitations of behavioral animation that can

be solved through machine learning. There may exist other interesting avenues for

applying machine learning in this field.

186

www.manaraa.com

Bibliography

C Aggarwal, A Hinneburg, and D Keim. On the surprising behavior of distance metrics in

high dimensional space. Lecture Notes in Computer Science, 1973:420–435, 2001.

T Alexander. Gocap: Game observation capture. In E. Rabin, editor, AI Game Program-

ming Wisdom, pages 579–585. Charles River Media, Hingham MA, 2002.

M Anderson, E McDaniel, and S Chenney. Constrained animation of flocks. In Proceedings

of Eurographics/SIGGRAPH Symposium on Computer Animation, pages 286–297, 2003.

O Arikan, D Forsyth, and J O’Brien. Motion synthesis from annotations. ACM Trans. on

Graphics, 22(3):402–408, 2003.

R C Arkin. Behavior-Based Robotics. MIT Press, Cambridge, Mass., 1998.

N Badler, M Palmer, and R Bindiganavale. Animation control for real-time virtual humans.

Communications of the ACM, 42(8):65–73, 1999.

E Bizzi, S F Giszter, E Loeb, F A Mussa-Ivaldi, and P Saltie. Modular organization of

motor behavior in the frog’s spinal cord. Trends in Neuroscience, 18:442–446, 1995.

B Blumberg, M Downie, Y Ivanov, M Berlin, M P Johnson, and B Tomlinson. Integrated

learning for interactive synthetic characters. In Proceedings of SIGGRAPH 2002, pages

417–426. ACM Press / ACM SIGGRAPH, 2002.

B Blumberg and T Galyean. Multi-level direction of autonomous creatures for real-time

virtual environments. In Proceedings of SIGGRAPH 1995, pages 47–54. ACM Press /

ACM SIGGRAPH, 1995.

187

www.manaraa.com

R Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation, 2:14–23, 1986.

H Bui, D Kieronska, and S Venkatesh. Learning other agents’ preferences in multiagent

negotiation. In Proceedings of Thirteenth National Conference on Artificial Intelligence,

pages 114–119, 1996.

R Burke, D Isla, M Downie, Y Ivanov, and B Blumberg. Creature smarts: The art and archi-

tecture of a virtual brain. In Proceedings of the Computer Game Developers Conference,

2001.

R Byrne and A Russon. Learning by imitation: A hierarchical approach. Journal of Be-

havioral and Brain Sciences, 6(3), 1998.

S Carberry. Techniques for plan recognition. User Modeling and User-Adapted Interaction,

11:31–48, 2001.

D Carmel and S Markovitch. Incorporating opponent models into adversary search. In

Proceedings of Thirteenth National Conference on Artificial Intelligence, pages 120–

125, 1996a.

D Carmel and S Markovitch. Learning models of intelligent agents. In Proceedings of

Thirteenth National Conference on Artificial Intelligence, pages 62–67, 1996b.

F Devillers, S Donikian, F Lamarche, and J-F Taille. A programming environment for

behavioural animation. Journal of Visualization and Computer Animation, 13:263–274,

2002.

J Dinerstein, T Crow, and P K Egbert. Intelligence capture. Technical report, Brigham

Young University, 2004a. http://rivit.cs.byu.edu/a3dg/publications/intelcap.pdf; ac-

cessed January 17, 2005.

J Dinerstein and P Egbert. Improved behavioral animation through regression. In Proceed-

ings of Computer Animation and Social Agents (CASA ’04), pages 231–238. Computer

Graphics Society, 2004.

188

www.manaraa.com

J Dinerstein, P Egbert, H de Garis, and N Dinerstein. Fast and learnable behavioral and

cognitive modeling for virtual character animation. Journal of Computer Animation and

Virtual Worlds, 15(2):95–108, 2004b.

J Dinerstein and P K Egbert. Fast multi-level adaptation for interactive autonomous char-

acters. ACM Trans. on Graphics, 24(2), 2005.

R Duda, P Hart, and D Stork. Pattern Classification, 2nd ed. Wiley Interscience, 2000.

J Duncan. Ring masters. Cinefex, 89:64–131, 2002.

A Egges, S Kshirsagar, and N Magnenat-Thalmann. Generic personality and emotion sim-

ulation for conversational agents. Journal of Computer Animation and Virtual Worlds,

15:1–13, 2004.

R Evans. Varieties in learning. In E. Rabin, editor, AI Game Programming Wisdom, pages

567–578. Charles River Media, Hingham MA, 2002.

P Faloutsos, M van de Panne, and D Terzopoulos. Composible controllers for physics-

based character animation. In Proceedings of SIGGRAPH 2001, pages 39–48. ACM

Press / ACM SIGGRAPH, 2001.

J Funge. AI for Games and Animation: A Cognitive Modeling Approach. A.K. Peters:

Natick, MA., 1999.

J Funge. Cognitive modeling for games and animation. Communications of the ACM, 43

(7):49–58, 2000.

J Funge, X Tu, and D Terzopoulos. Cognitive modeling: Knowledge, reasoning, and plan-

ning for intelligent characters. In Proceedings of SIGGRAPH 1999, pages 29–38. ACM

Press / ACM SIGGRAPH, 1999.

S Gadanho. Learning behavior-selection by emotions and cognition in a multi-goal robot

task. Journal of Machine Learning Research, 4:385–412, 2003.

M Gillies and N Dodgson. Eye movements and attention for behavioural animation. Jour-

nal of Visualization and Computer Animation, 13:287–300, 2002.

189

www.manaraa.com

M Gleicher. Retargetting motion to new characters. In Proceedings of SIGGRAPH 1998,

pages 33–42. ACM Press / ACM SIGGRAPH, 1998.

M Gleicher, H J Shin, L Kovar, and A Jepsen. Snap-together motion: assembling run-time

animations. In Proceedings of Eurographics/SIGGRAPH Animation Symposium, pages

181–188, 2003.

P Gmytrasiewicz and E Durfee. Rational coordination in multi-agent environments. Au-

tonomous Agents and Multi-Agent Systems, 3(4):319–350, 2000.

P Gmytrasiewicz and E Durfee. Rational communication in multi-agent environments.

Autonomous Agents and Multi-Agent Systems, 4:233–272, 2001.

R Grzeszczuk and D Terzopoulos. Automated learning of muscle-actuated locomotion

through control abstraction. In Proceedings of SIGGRAPH 1995, pages 63–70. ACM

Press / ACM SIGGRAPH, 1995.

R Grzeszczuk, D Terzopoulos, and G Hinton. Neuroanimator: Fast neural network emu-

lation and control of physics-based models. In Proceedings of SIGGRAPH 1998, pages

9–20. ACM Press / ACM SIGGRAPH, 1998.

I Guyon and A Elisseeff. An introduction to variable and feature selection. Journal of

Machine Learning Research, 3:1157–1182, 2003.

S Haykin. Neural Networks: A Comprehensive Foundation 2nd edition. Prentice Hall:

Upper Saddle River, NJ., 1999.

L W He, M Cohen, and D Salesin. The virtual cinematographer: A paradigm for automatic

real-time camera control and directing. In Proceedings of SIGGRAPH 1996, pages 217–

224. ACM Press / ACM SIGGRAPH, 1996.

J Hodgins and N Pollard. Adapting simulated behaviors for new characters. In Proceedings

of SIGGRAPH 1997, pages 153–162. ACM Press / ACM SIGGRAPH, 1997.

K Hornik, M Stinchcomb, and H White. Multilayer feedforward networks are universal

approximators. Neural Networks, 2:359–366, 1989.

190

www.manaraa.com

J Hu and M P Wellman. Online learning about other agents in a dynamic multiagent system.

In Proceedings of Second International Conference on Autonomous Agents, pages 239–

246, 1998.

C Isbell, C Shelton, M Kearns, S Singh, and P Stone. A social reinforcement learning

agent. In Proceedings of Fifth International Conference on Autonomous Agents, pages

377–384, 2001.

D Isla and B Blumberg. New challenges for character-based AI for games. In AAAI Spring

Symposium on AI and Interactive Entertainment, 2002.

D Isla, R Burke, M Downie, and B Blumberg. A layered brain architecture for synthetic

creatures. In Proceedings of IJCAI, pages 1051–1058, 2001.

D L James and K Fatahalian. Precomputing interactive dynamic deformable scenes. ACM

Trans. on Graphics, 22(3):879–887, 2003.

L Kaelbling, M Littman, and A Moore. Reinforcement learning: A survey. Journal of

Artificial Intelligence Research, 4:237–285, 1996.

G Kaminka, M Veleso, S Schaffer, C Sollitto, R Adobbati, A Marshall, A Scholer, and

S Tejada. Gamebots: a flexible test bed for multiagent team research. Communications

of the ACM, 45(1):43–45, 2002.

M Kasper, G Fricke, K Steuernagel, and E von Puttkamer. A behavior-based mobile robot

architecture for learning from demonstration. Robotics and Autonomous Systems, 34:

153–164, 2001.

B Kerkez and M Cox. Incremental case-based plan recognition with local predictions. In-

ternational Journal of Artificial Intelligence Tools: Architectures, languages, algorithms,

12(4):413–463, 2003.

A Koschan and M Abidi. A comparison of median filter techniques for noise removal in

color images. In 7th Workshop on Color Image Processing, pages 69–79, 2001.

191

www.manaraa.com

J Laird. It knows what you’re going to do: Adding anticipation to the quakebot. In Pro-

ceedings of the Fifth International Conference on Autonomous Agents, pages 385–392,

2001.

M Littman. Markov games as a framework for multi-agent reinforcement learning. In

Proceedings of Machine Learning ’94, pages 157–163, 1994.

M Mataric. Getting humanoids to move and imitate. IEEE Intelligent Systems, pages

18–24, July 2000.

G Matthews. Personality, Emotion, and Cognitive Science. Elsevier, Amsterdam, 1997.

A Meltzoff and M Moore. Early imitation within a functional framework. Infant Behavior

and Development, 15:479–505, 1992.

R Metoyer and J Hodgins. Reactive pedestrian path following from examples. In Procced-

ings of Computer Animation and Social Agents, pages 149–156, 2003.

J Millar, J Hanna, and S Kealy. A review of behavioural animation. Computer and Graphics

Journal, 23:127–143, 1999.

M Minsky. Society of Mind. Simon & Schuster, New York, 1985.

T Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

J Monzani, A Caicedo, and D Thalmann. Integrating behavioural animation techniques.

Computer Graphics Forum, 20(3), 2001.

S Musse and D Thalmann. Hierarchical model for real time simulation of virtual human

crowds. IEEE Trans. on Vis. and Computer Graphics, 7(2), 2001.

L Nadel. Encyclopedia of Cognitive Science. Nature Pub. Group, London., 2003.

A Newell. Unified Theories of Cognition. Harvard University Press, Cambridge, MA,

1990.

M Nicolescu. A Framework for Learning From Demonstration, Generalization and Prac-

tice in Human-Robot Domains. PhD thesis, University of Southern California, 2003.

192

www.manaraa.com

K Perlin and A Goldberg. Improv: A system for scripting interactive actors in virtual

worlds. In Proceedings of SIGGRAPH 1996, pages 205–216. ACM Press / ACM SIG-

GRAPH, 1996.

A Pina, E Cerezo, and F Seron. Computer animation: from avatars to unrestricted au-

tonomous actors (a survey on replication and modelling mechanisms). Computers and

Graphics Journal, 24:297–311, 2000.

R Price. Accelerating Reinforcement Learning through Imitation. PhD thesis, University

of British Columbia, 2002.

A Rao and M Georgeff. BDI agents: From theory to practice. In Proceedings of the First

Intl. Conference on Multi-Agent Systems, 1995.

J H Reif and H Wang. Social potential fields: A distributed behavioral control for au-

tonomous robots. Robotics and Autonomous Systems, 27:171–194, 1999.

L Reissell and D Pai. Modeling stochastic dynamical systems for interactive simulation.

Computer Graphics Forum, 20(3):339–348, 2001.

C Reynolds. Flocks, herds, and schools: A distributed behavioral model. In Proceedings

of SIGGRAPH 1987, pages 25–34. ACM Press / ACM SIGGRAPH, 1987.

C Reynolds. Competition, coevolution and the game of tag. In Proceedings of Artificial

Life IV, pages 59–69, 1994.

M Rovatsos, G Weib, and B Wolf. Multiagent learning for open systems: A study on

opponent classification. In D.K̃udenko E.Ãlanso and D. Kazakov, editors, Lecture Notes

on AI 2636, pages 66–87. Springer, 2003.

D Rumelhart, G Hinton, and R Williams. Learning internal representations in error back-

propagation. Parallel distributed processing: Explorations in the microstructure of cog-

nition, 1:318–362, 1986.

S Russell and P Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd

edition, 2003.

193

www.manaraa.com

A Safonova, J Hodgins, and N Pollard. Synthesizing physically realistic human motion in

low-dimensional, behavior-specific spaces. ACM Trans. on Graphics, 23(3), 2004.

C Schaffer. A conservation law for generalization performance. In Proceedings of the

Eleventh International Conference on Machine Learning (ML’94), 1994.

P Schyns, R Goldstone, and J Thilbaut. The development of features in object concepts.

Behavioral and Brain Sciences, 21(1):1–54, 1998.

S Sen and N Arora. Learning to take risks. In Collected papers from AAAI-97 workshop

on multiagent learning, pages 59–64, 1997.

K Sims. Evolving virtual creatures. In Proceedings of SIGGRAPH 1994, pages 15–22.

ACM Press / ACM SIGGRAPH, 1994.

P Stone. Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soc-

cer. MIT Press, Cambridge, MA, 2000.

P Stone and M Veloso. Multiagent systems: A survey from a machine learning perspective.

Autonomous Robots, 8(3):345–383, 1997.

M Sung, M Gleicher, and S Chenney. Scalable behaviors for crowd simulation. Computer

Graphics Forum, 23(3), 2004.

R Sutton and A Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,

Massachusetts, 1998.

D Terzopoulos. Artificial life for computer graphics. Communications of the ACM, 42(8):

33–42, 1999.

G Tesauro. Temporal difference learning in TD-Gammon. Communications of the ACM,

38(3):58–68, 1995.

C Thornton. Indirect sensing through abstractive learning. Intelligent Data Analysis, 7(3):

1–16, 2003.

194

www.manaraa.com

B Tomlinson and B Blumberg. Alphawolf: Social learning, emotion and development in

autonomous virtual agents. In First GSFC/JPL Workshop on Radical Agent Concepts,

2002.

T Tran and R Cohen. A reputation-oriented reinforcement learning strategy for agents in

electronic marketplaces. Computational Intelligence, 18(4):550–565, 2002.

X Tu and D Terzopoulos. Artificial fishes: Physics, locomotion, perception, behavior. In

Proceedings of SIGGRAPH 1994, pages 43–50. ACM Press / ACM SIGGRAPH, 1994.

M van de Panne and E Fiume. Sensor-actuator networks. In Proceedings of SIGGRAPH

1993. ACM Press / ACM SIGGRAPH, 1993.

M van de Panne, R Kim, and E Fiume. Synthesizing parameterized motions. In Proceed-

ings of 5th Eurographics Workshop on Simulation and Animation, 1994.

M van Lent and J Laird. Learning procedural knowledge through observation. In Proceed-

ings of International Conference On Knowledge Capture, pages 179–186. ACM Press,

2001.

J Vidal and E Durfee. Agents learning about agents: A framework and analysis. In Col-

lected papers from American Association for Artificial Intelligence (AAAI-97), pages

71–76, 1997.

C Watkins and P Dayan. Q-learning. Machine Learning, 8, 1992.

G Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

MIT Press, 1999.

D R Wilson and T Martinez. An integrated instance-based learning algorithm. Computa-

tional Intelligence, 16(1):1–28, 2000.

B Yoon. Real world learning: exploratory efforts. In Proceedings of DARPA Cognitive

Systems Conference, 2003.

B Yoon, R Burke, and B Blumberg. Interactive training for synthetic characters. In Pro-

ceedings of AAAI, pages 249–254, 2000.

195

www.manaraa.com

T Zhu, R Greiner, and G Haubl. Learning a model of a web user’s interests. In Proceedings

of Ninth International Conference on User Modeling, 2003.

196

	Improving and Extending Behavioral Animation Through Machine Learning
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledments
	Contents
	Part I -- Introduction
	Chapter 1 -- Introduction and Motivation
	1.1 -- Autonomous Agents and Machine Learning
	1.2 -- Behavioral Animation
	1.3 -- Thesis Statement
	1.4 -- Overview of Dissertation
	1.5 -- Publications

	Part II -- Fast Construction and Approximation of Cognitive Models Through Regression
	Chapter 2 -- Fast and Learnable Behavioral and Cognitive Modeling for Virtual Character Animation
	2.1 -- Introduction
	2.2 -- Related Work
	2.3 -- Introduction to Cognitive Modeling
	2.4 -- Introduction to Artificial Neural Networks
	2.5 -- Fast Animation using Neural Network Approximation of Cognitive Models
	2.5.1 -- Structure
	2.5.2 -- Training the Neural Network
	2.5.3 -- Choosing Salient Variables and Features
	2.5.4 -- Using the Neural Network
	2.5.5 -- Discussion

	2.6 -- Off-line Character Learning
	2.6.1 -- Background
	2.6.2 -- Off-line Character learning Through Searching
	2.6.3 -- Designing Fitness Functions for Character Learning
	2.6.4 -- Discussion

	2.7 -- Experimental Results
	2.7.1 -- Herding a Group of Characters
	2.7.2 -- Spaceship Pilot and Asteroids
	2.7.3 -- Spaceship Battle

	 2.8 -- Conclusions and Future Work

	Chapter 3 -- Improved Behavioral Animation Through Regression
	3.1 -- Introduction
	3.2 -- Regression of Behavioral and Cognitive Models
	3.2.1 -- Formalism
	3.2.2 -- Our Implementation

	3.3 -- Comparison of Machine Learning Techniques
	3.3.1 -- The Artificial Neural Network
	3.3.2 -- The Support Vector Machine
	3.3.3 -- Continuous k-Nearest Neighbor
	3.3.4 -- Other Machine Learning Techniques

	3.4 -- Input Selection for Behavior Regression
	3.5 -- Summary and Discussion

	Part III -- Online Adaptation for Interactive Characters
	Chapter 4 -- Fast and Robust Incremental Action Prediction for Interactive Agents
	4.1 -- Introduction
	4.2 -- Related Work
	4.3 -- The Interactive Agent Learning Problem
	4.4 -- Technique Description
	4.4.1 -- State and Action Representations
	4.4.2 -- Learning State-Action Cases
	4.4.3 -- Generalization of Cases
	4.4.4 -- Using Case-Based Action Prediction in Practice

	4.5 -- Experimental Results
	4.5.1 -- Simplified Rugby Case Studies
	4.5.2 -- Complex Virtual Rugby Case Study
	4.5.3 -- Capture the Flag

	4.6 -- Summary and Discussion

	Chapter 5 -- Fast Multi-Level Adaptation for Interactive Autonomous Characters
	5.1 -- Introduction
	5.2 -- Related Work
	5.3 -- Background
	5.3.1 -- A Common Behavioral Animation Framework
	5.3.2 -- Machine Learning

	5.4 -- Making Adaptation Practical
	5.4.1 -- Requirements
	5.4.2 -- Assumptions

	5.5 -- System Description
	5.5.1 -- State and Action Representations
	5.5.2 -- Low-Level Learning (for Action Selection)
	5.5.3 -- Mid-Level Learning (for Task Selection)
	5.5.4 -- Mimicking (for Action and Task Selection)
	5.5.5 -- High-Level Learning (for Goal Selection)
	5.5.6 -- Using Adaptation in Practice

	5.6 -- Experimental Results
	5.6.1 -- Virtual Rugby
	5.6.2 -- Capture The Flag (CTF)
	5.6.3 -- Automated Cinematography and Attention Selection

	5.7 -- Summary and Discussion

	Part IV -- Creating Behavior Through Demonstration
	Chapter 6 -- Intelligence Capture - Automatic Behavioral Animation from Human Example
	6.1 -- Introduction
	6.1.1 -- Previous Work

	6.2 -- Intelligence Capture
	6.2.1 -- Overview and Formulation
	6.2.2 -- Training
	6.2.3 -- Autonomous Behavior

	6.3 -- Experimental Results
	6.3.1 -- Spaceship Pilot
	6.3.2 -- Crowd of Articulated Human Characters

	6.4 -- Discussion

	Chapter 7 -- Data-Driven Programming and Behavior for Autonomous Virtual Characters
	7.1 -- Introduction
	7.2 -- Background and Related Work
	7.3 -- Overview and Formulation
	7.4 -- Training
	7.4.1 -- Integration
	7.4.2 -- Demonstration
	7.4.3 -- Testing and Editing

	7.5 -- Autonomous Behavior
	7.5.1 -- Behavior Synthesis
	7.5.2 -- Running Simulations
	7.5.3 -- Parameters

	7.6 -- Using Our Technique in Practice
	7.7 -- Experimental Results
	7.7.1 -- Summary of Test Beds
	7.7.2 -- Findings

	7.8 -- Summary

	Part V -- Conclusion
	Chapter 8 -- Conclusion
	8.1 -- Contributions
	8.2 -- Future Work

	Bibliography

